zephyr/subsys/sensing/sensor_mgmt.c
Zhang Lixu 5058355c1b sensing: add rtio implement for sensing subsys
1. add function sensing_iodev_submit and defined struct
   sensing_submit_config
2. fix the issue of phy_3d_sensor

Signed-off-by: Zhang Lixu <lixu.zhang@intel.com>
2024-01-24 10:32:10 +01:00

522 lines
14 KiB
C

/*
* Copyright (c) 2023 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/sys/__assert.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/rtio/rtio.h>
#include <zephyr/sensing/sensing.h>
#include <zephyr/sensing/sensing_sensor.h>
#include <zephyr/logging/log.h>
#include <stdlib.h>
#include "sensor_mgmt.h"
#define DT_DRV_COMPAT zephyr_sensing
BUILD_ASSERT(DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 1,
"only one 'zephyr_sensing' compatible node may be present");
LOG_MODULE_REGISTER(sensing, CONFIG_SENSING_LOG_LEVEL);
static struct sensing_context sensing_ctx = {
};
RTIO_DEFINE_WITH_MEMPOOL(sensing_rtio_ctx, CONFIG_SENSING_RTIO_SQE_NUM,
CONFIG_SENSING_RTIO_CQE_NUM,
CONFIG_SENSING_RTIO_BLOCK_COUNT,
CONFIG_SENSING_RTIO_BLOCK_SIZE, 4);
static enum sensor_channel sensing_sensor_type_to_chan(const int32_t type)
{
switch (type) {
case SENSING_SENSOR_TYPE_MOTION_ACCELEROMETER_3D:
return SENSOR_CHAN_ACCEL_XYZ;
case SENSING_SENSOR_TYPE_MOTION_GYROMETER_3D:
return SENSOR_CHAN_GYRO_XYZ;
default:
break;
}
return SENSOR_CHAN_PRIV_START;
}
/* sensor_later_config including arbitrate/set interval/sensitivity
*/
static uint32_t arbitrate_interval(struct sensing_sensor *sensor)
{
struct sensing_connection *conn;
uint32_t min_interval = UINT32_MAX;
uint32_t interval;
/* search from all clients, arbitrate the interval */
for_each_client_conn(sensor, conn) {
LOG_INF("arbitrate interval, sensor:%s for each conn:%p, interval:%d(us)",
sensor->dev->name, conn, conn->interval);
if (!is_client_request_data(conn)) {
continue;
}
if (conn->interval < min_interval) {
min_interval = conn->interval;
}
}
/* min_interval == UINT32_MAX means sensor is not opened by any clients,
* then interval should be 0
*/
interval = (min_interval == UINT32_MAX ? 0 : min_interval);
LOG_DBG("arbitrate interval, sensor:%s, interval:%d(us)",
sensor->dev->name, interval);
return interval;
}
static int set_arbitrate_interval(struct sensing_sensor *sensor, uint32_t interval)
{
struct sensing_submit_config *config = sensor->iodev->data;
struct sensor_value odr = {0};
int ret;
__ASSERT(sensor && sensor->dev, "set arbitrate interval, sensor or sensor device is NULL");
LOG_INF("set arbitrate interval:%d, sensor:%s, is_streaming:%d",
interval, sensor->dev->name, config->is_streaming);
if (interval) {
odr.val1 = USEC_PER_SEC / interval;
odr.val2 = (uint64_t)USEC_PER_SEC * 1000000 / interval % 1000000;
}
ret = sensor_attr_set(sensor->dev, config->chan,
SENSOR_ATTR_SAMPLING_FREQUENCY, &odr);
if (ret) {
LOG_ERR("%s set attr freq failed:%d", sensor->dev->name, ret);
return ret;
}
if (sensor->interval) {
if (config->is_streaming) {
rtio_sqe_cancel(sensor->stream_sqe);
} else {
k_timer_stop(&sensor->timer);
}
}
if (interval) {
if (config->is_streaming) {
ret = sensor_stream(sensor->iodev, &sensing_rtio_ctx,
sensor, &sensor->stream_sqe);
} else {
k_timer_start(&sensor->timer, K_USEC(interval),
K_USEC(interval));
}
}
sensor->interval = interval;
return ret;
}
static int config_interval(struct sensing_sensor *sensor)
{
uint32_t interval = arbitrate_interval(sensor);
LOG_INF("config interval, sensor:%s, interval:%d", sensor->dev->name, interval);
return set_arbitrate_interval(sensor, interval);
}
static uint32_t arbitrate_sensitivity(struct sensing_sensor *sensor, int index)
{
struct sensing_connection *conn;
uint32_t min_sensitivity = UINT32_MAX;
/* search from all clients, arbitrate the sensitivity */
for_each_client_conn(sensor, conn) {
LOG_DBG("arbitrate sensitivity, sensor:%s for each conn:%p, idx:%d, sens:%d",
sensor->dev->name, conn, index,
conn->sensitivity[index]);
if (!is_client_request_data(conn)) {
continue;
}
if (conn->sensitivity[index] < min_sensitivity) {
min_sensitivity = conn->sensitivity[index];
}
}
LOG_DBG("arbitrate sensitivity, sensor:%s, min_sensitivity:%d",
sensor->dev->name, min_sensitivity);
/* min_sensitivity == UINT32_MAX means no client is requesting to open sensor,
* by any client, in this case, return sensitivity 0
*/
return (min_sensitivity == UINT32_MAX ? 0 : min_sensitivity);
}
static int set_arbitrate_sensitivity(struct sensing_sensor *sensor, int index, uint32_t sensitivity)
{
struct sensing_submit_config *config = (struct sensing_submit_config *)sensor->iodev->data;
struct sensor_value threshold = {.val1 = sensitivity};
int i;
/* update sensor sensitivity */
sensor->sensitivity[index] = sensitivity;
for (i = 0; i < sensor->sensitivity_count; i++) {
threshold.val1 = MIN(sensor->sensitivity[i], threshold.val1);
}
return sensor_attr_set(sensor->dev, config->chan,
SENSOR_ATTR_HYSTERESIS, &threshold);
}
static int config_sensitivity(struct sensing_sensor *sensor, int index)
{
uint32_t sensitivity = arbitrate_sensitivity(sensor, index);
LOG_INF("config sensitivity, sensor:%s, index:%d, sensitivity:%d",
sensor->dev->name, index, sensitivity);
return set_arbitrate_sensitivity(sensor, index, sensitivity);
}
static int config_sensor(struct sensing_sensor *sensor)
{
int ret;
int i = 0;
ret = config_interval(sensor);
if (ret) {
LOG_WRN("sensor:%s config interval error", sensor->dev->name);
}
for (i = 0; i < sensor->sensitivity_count; i++) {
ret = config_sensitivity(sensor, i);
if (ret) {
LOG_WRN("sensor:%s config sensitivity index:%d error:%d",
sensor->dev->name, i, ret);
}
}
return ret;
}
static void sensor_later_config(void)
{
LOG_INF("sensor later config begin...");
for_each_sensor_reverse(sensor) {
if (atomic_test_and_clear_bit(&sensor->flag, SENSOR_LATER_CFG_BIT)) {
LOG_INF("sensor later config, sensor:%s",
sensor->dev->name);
config_sensor(sensor);
}
}
}
static void sensing_runtime_thread(void *p1, void *p2, void *p3)
{
struct sensing_context *ctx = p1;
int ret;
LOG_INF("sensing runtime thread start...");
do {
ret = k_sem_take(&ctx->event_sem, K_FOREVER);
if (!ret) {
if (atomic_test_and_clear_bit(&ctx->event_flag, EVENT_CONFIG_READY)) {
LOG_INF("runtime thread triggered by EVENT_CONFIG_READY");
sensor_later_config();
}
}
} while (1);
}
static void save_config_and_notify(struct sensing_sensor *sensor)
{
struct sensing_context *ctx = &sensing_ctx;
__ASSERT(sensor, "save config and notify, sensing_sensor not be NULL");
LOG_INF("save config and notify, sensor:%s", sensor->dev->name);
/* remember sensor_later_config bit to sensor */
atomic_set_bit(&sensor->flag, SENSOR_LATER_CFG_BIT);
/*remember event config ready and notify sensing_runtime_thread */
atomic_set_bit(&ctx->event_flag, EVENT_CONFIG_READY);
k_sem_give(&ctx->event_sem);
}
static int set_sensor_state(struct sensing_sensor *sensor, enum sensing_sensor_state state)
{
__ASSERT(sensor, "set sensor state, sensing_sensor is NULL");
sensor->state = state;
return 0;
}
static void init_connection(struct sensing_connection *conn,
struct sensing_sensor *source,
struct sensing_sensor *sink)
{
__ASSERT(conn, "init each connection, invalid connection");
if (source) {
conn->source = source;
}
if (sink) {
conn->sink = sink;
}
conn->interval = 0;
memset(conn->sensitivity, 0x00, sizeof(conn->sensitivity));
/* link connection to its reporter's client_list */
sys_slist_append(&conn->source->client_list, &conn->snode);
}
static void sensing_sensor_polling_timer(struct k_timer *timer_id)
{
struct sensing_sensor *sensor = CONTAINER_OF(timer_id,
struct sensing_sensor, timer);
/* TODO: move it into sensing_runtime_thread */
sensor_read(sensor->iodev, &sensing_rtio_ctx, sensor);
}
static int init_sensor(struct sensing_sensor *sensor)
{
struct sensing_submit_config *config;
struct sensing_connection *conn;
int i;
__ASSERT(sensor && sensor->dev, "init sensor, sensor or sensor device is NULL");
k_timer_init(&sensor->timer, sensing_sensor_polling_timer, NULL);
sys_slist_init(&sensor->client_list);
for (i = 0; i < sensor->reporter_num; i++) {
conn = &sensor->conns[i];
/* source sensor has been assigned in compile time */
init_connection(conn, NULL, sensor);
LOG_INF("init sensor, reporter:%s, client:%s, connection:%d(%p)",
conn->source->dev->name, sensor->dev->name, i, conn);
}
config = sensor->iodev->data;
config->chan = sensing_sensor_type_to_chan(sensor->info->type);
return 0;
}
static int sensing_init(const struct device *dev)
{
struct sensing_context *ctx = dev->data;
enum sensing_sensor_state state;
int ret = 0;
LOG_INF("sensing init begin...");
for_each_sensor(sensor) {
ret = init_sensor(sensor);
if (ret) {
LOG_ERR("sensor:%s initial error", sensor->dev->name);
}
state = (ret ? SENSING_SENSOR_STATE_OFFLINE : SENSING_SENSOR_STATE_READY);
ret = set_sensor_state(sensor, state);
if (ret) {
LOG_ERR("set sensor:%s state:%d error", sensor->dev->name, state);
}
LOG_INF("sensing init, sensor:%s, state:%d", sensor->dev->name, sensor->state);
}
k_sem_init(&ctx->event_sem, 0, 1);
LOG_INF("create sensing runtime thread ok");
ctx->sensing_initialized = true;
return ret;
}
int open_sensor(struct sensing_sensor *sensor, struct sensing_connection **conn)
{
struct sensing_connection *tmp_conn;
if (sensor->state != SENSING_SENSOR_STATE_READY) {
return -EINVAL;
}
/* create connection from sensor to application(client = NULL) */
tmp_conn = malloc(sizeof(*tmp_conn));
if (!tmp_conn) {
return -ENOMEM;
}
init_connection(tmp_conn, sensor, NULL);
*conn = tmp_conn;
return 0;
}
int close_sensor(struct sensing_connection **conn)
{
struct sensing_connection *tmp_conn = *conn;
if (tmp_conn == NULL) {
LOG_ERR("connection should not be NULL");
return -EINVAL;
}
__ASSERT(!tmp_conn->sink, "sensor derived from device tree cannot be closed");
__ASSERT(tmp_conn->source, "reporter should not be NULL");
sys_slist_find_and_remove(&tmp_conn->source->client_list, &tmp_conn->snode);
save_config_and_notify(tmp_conn->source);
free(*conn);
*conn = NULL;
return 0;
}
int sensing_register_callback(struct sensing_connection *conn,
struct sensing_callback_list *cb_list)
{
if (conn == NULL) {
LOG_ERR("register sensing callback list, connection not be NULL");
return -ENODEV;
}
__ASSERT(!conn->sink, "only connection to application could register sensing callback");
if (cb_list == NULL) {
LOG_ERR("callback should not be NULL");
return -ENODEV;
}
conn->callback_list = cb_list;
return 0;
}
int set_interval(struct sensing_connection *conn, uint32_t interval)
{
LOG_INF("set interval, sensor:%s, interval:%u(us)", conn->source->dev->name, interval);
__ASSERT(conn && conn->source, "set interval, connection or reporter not be NULL");
if (interval > 0 && interval < conn->source->info->minimal_interval) {
LOG_ERR("interval:%d(us) should no less than min interval:%d(us)",
interval, conn->source->info->minimal_interval);
return -EINVAL;
}
conn->interval = interval;
conn->next_consume_time = EXEC_TIME_INIT;
LOG_INF("set interval, sensor:%s, conn:%p, interval:%d",
conn->source->dev->name, conn, interval);
save_config_and_notify(conn->source);
return 0;
}
int get_interval(struct sensing_connection *conn, uint32_t *interval)
{
__ASSERT(conn, "get interval, connection not be NULL");
*interval = conn->interval;
LOG_INF("get interval, sensor:%s, interval:%u(us)", conn->source->dev->name, *interval);
return 0;
}
int set_sensitivity(struct sensing_connection *conn, int8_t index, uint32_t sensitivity)
{
int i;
__ASSERT(conn && conn->source, "set sensitivity, connection or reporter not be NULL");
LOG_INF("set sensitivity, sensor:%s, index:%d, sensitivity:%d, count:%d",
conn->source->dev->name, index,
sensitivity, conn->source->sensitivity_count);
if (index < SENSING_SENSITIVITY_INDEX_ALL || index >= conn->source->sensitivity_count) {
LOG_ERR("sensor:%s sensitivity index:%d invalid", conn->source->dev->name, index);
return -EINVAL;
}
if (index == SENSING_SENSITIVITY_INDEX_ALL) {
for (i = 0; i < conn->source->sensitivity_count; i++) {
conn->sensitivity[i] = sensitivity;
}
} else {
conn->sensitivity[index] = sensitivity;
}
return 0;
}
int get_sensitivity(struct sensing_connection *conn, int8_t index, uint32_t *sensitivity)
{
int i = 0;
__ASSERT(conn && conn->source, "get sensitivity, connection or reporter not be NULL");
*sensitivity = UINT32_MAX;
if (index < SENSING_SENSITIVITY_INDEX_ALL || index >= conn->source->sensitivity_count) {
LOG_ERR("sensor:%s sensitivity index:%d invalid", conn->source->dev->name, index);
return -EINVAL;
}
if (index == SENSING_SENSITIVITY_INDEX_ALL) {
/* each sensitivity index value should be same for global sensitivity */
for (i = 1; i < conn->source->sensitivity_count; i++) {
if (conn->sensitivity[i] != conn->sensitivity[0]) {
LOG_ERR("sensitivity[%d]:%d should be same as sensitivity:%d",
i, conn->sensitivity[i], conn->sensitivity[0]);
return -EINVAL;
}
}
*sensitivity = conn->sensitivity[0];
} else {
*sensitivity = conn->sensitivity[index];
}
LOG_INF("get_sensitivity, sensor:%s, index:%d, sensitivity:%d, count:%d",
conn->source->dev->name, index,
*sensitivity, conn->source->sensitivity_count);
return 0;
}
int sensing_get_sensors(int *sensor_nums, const struct sensing_sensor_info **info)
{
if (info == NULL) {
LOG_ERR("sensing_sensor_info should not be NULL");
return -ENODEV;
}
STRUCT_SECTION_COUNT(sensing_sensor_info, sensor_nums);
STRUCT_SECTION_GET(sensing_sensor_info, 0, info);
return 0;
}
K_THREAD_DEFINE(sensing_runtime, CONFIG_SENSING_RUNTIME_THREAD_STACK_SIZE, sensing_runtime_thread,
&sensing_ctx, NULL, NULL, CONFIG_SENSING_RUNTIME_THREAD_PRIORITY, 0, 0);
DEVICE_DT_INST_DEFINE(0, sensing_init, NULL, &sensing_ctx, NULL, POST_KERNEL,
CONFIG_SENSOR_INIT_PRIORITY, NULL);