zephyr/kernel/msg_q.c
Patrik Flykt 4344e27c26 all: Update reserved function names
Update reserved function names starting with one underscore, replacing
them as follows:
   '_k_' with 'z_'
   '_K_' with 'Z_'
   '_handler_' with 'z_handl_'
   '_Cstart' with 'z_cstart'
   '_Swap' with 'z_swap'

This renaming is done on both global and those static function names
in kernel/include and include/. Other static function names in kernel/
are renamed by removing the leading underscore. Other function names
not starting with any prefix listed above are renamed starting with
a 'z_' or 'Z_' prefix.

Function names starting with two or three leading underscores are not
automatcally renamed since these names will collide with the variants
with two or three leading underscores.

Various generator scripts have also been updated as well as perf,
linker and usb files. These are
   drivers/serial/uart_handlers.c
   include/linker/kobject-text.ld
   kernel/include/syscall_handler.h
   scripts/gen_kobject_list.py
   scripts/gen_syscall_header.py

Signed-off-by: Patrik Flykt <patrik.flykt@intel.com>
2019-03-11 13:48:42 -04:00

303 lines
7.1 KiB
C

/*
* Copyright (c) 2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Message queues.
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <debug/object_tracing_common.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <string.h>
#include <wait_q.h>
#include <misc/dlist.h>
#include <init.h>
#include <syscall_handler.h>
#include <kernel_internal.h>
extern struct k_msgq _k_msgq_list_start[];
extern struct k_msgq _k_msgq_list_end[];
#ifdef CONFIG_OBJECT_TRACING
struct k_msgq *_trace_list_k_msgq;
/*
* Complete initialization of statically defined message queues.
*/
static int init_msgq_module(struct device *dev)
{
ARG_UNUSED(dev);
struct k_msgq *msgq;
for (msgq = _k_msgq_list_start; msgq < _k_msgq_list_end; msgq++) {
SYS_TRACING_OBJ_INIT(k_msgq, msgq);
}
return 0;
}
SYS_INIT(init_msgq_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJECT_TRACING */
void k_msgq_init(struct k_msgq *q, char *buffer, size_t msg_size,
u32_t max_msgs)
{
q->msg_size = msg_size;
q->max_msgs = max_msgs;
q->buffer_start = buffer;
q->buffer_end = buffer + (max_msgs * msg_size);
q->read_ptr = buffer;
q->write_ptr = buffer;
q->used_msgs = 0;
q->flags = 0;
z_waitq_init(&q->wait_q);
q->lock = (struct k_spinlock) {};
SYS_TRACING_OBJ_INIT(k_msgq, q);
z_object_init(q);
}
int z_impl_k_msgq_alloc_init(struct k_msgq *q, size_t msg_size,
u32_t max_msgs)
{
void *buffer;
int ret;
size_t total_size;
if (__builtin_umul_overflow((unsigned int)msg_size, max_msgs,
(unsigned int *)&total_size)) {
ret = -EINVAL;
} else {
buffer = z_thread_malloc(total_size);
if (buffer != NULL) {
k_msgq_init(q, buffer, msg_size, max_msgs);
q->flags = K_MSGQ_FLAG_ALLOC;
ret = 0;
} else {
ret = -ENOMEM;
}
}
return ret;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_msgq_alloc_init, q, msg_size, max_msgs)
{
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(q, K_OBJ_MSGQ));
return z_impl_k_msgq_alloc_init((struct k_msgq *)q, msg_size, max_msgs);
}
#endif
void k_msgq_cleanup(struct k_msgq *q)
{
__ASSERT_NO_MSG(!z_waitq_head(&q->wait_q));
if ((q->flags & K_MSGQ_FLAG_ALLOC) != 0) {
k_free(q->buffer_start);
q->flags &= ~K_MSGQ_FLAG_ALLOC;
}
}
int z_impl_k_msgq_put(struct k_msgq *q, void *data, s32_t timeout)
{
__ASSERT(!z_is_in_isr() || timeout == K_NO_WAIT, "");
k_spinlock_key_t key = k_spin_lock(&q->lock);
struct k_thread *pending_thread;
int result;
if (q->used_msgs < q->max_msgs) {
/* message queue isn't full */
pending_thread = z_unpend_first_thread(&q->wait_q);
if (pending_thread != NULL) {
/* give message to waiting thread */
(void)memcpy(pending_thread->base.swap_data, data,
q->msg_size);
/* wake up waiting thread */
z_set_thread_return_value(pending_thread, 0);
z_ready_thread(pending_thread);
z_reschedule(&q->lock, key);
return 0;
} else {
/* put message in queue */
(void)memcpy(q->write_ptr, data, q->msg_size);
q->write_ptr += q->msg_size;
if (q->write_ptr == q->buffer_end) {
q->write_ptr = q->buffer_start;
}
q->used_msgs++;
}
result = 0;
} else if (timeout == K_NO_WAIT) {
/* don't wait for message space to become available */
result = -ENOMSG;
} else {
/* wait for put message success, failure, or timeout */
_current->base.swap_data = data;
return z_pend_curr(&q->lock, key, &q->wait_q, timeout);
}
k_spin_unlock(&q->lock, key);
return result;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_msgq_put, msgq_p, data, timeout)
{
struct k_msgq *q = (struct k_msgq *)msgq_p;
Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ));
Z_OOPS(Z_SYSCALL_MEMORY_READ(data, q->msg_size));
return z_impl_k_msgq_put(q, (void *)data, timeout);
}
#endif
void z_impl_k_msgq_get_attrs(struct k_msgq *q, struct k_msgq_attrs *attrs)
{
attrs->msg_size = q->msg_size;
attrs->max_msgs = q->max_msgs;
attrs->used_msgs = q->used_msgs;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_msgq_get_attrs, msgq_p, attrs)
{
struct k_msgq *q = (struct k_msgq *)msgq_p;
Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ));
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(attrs, sizeof(struct k_msgq_attrs)));
z_impl_k_msgq_get_attrs(q, (struct k_msgq_attrs *) attrs);
return 0;
}
#endif
int z_impl_k_msgq_get(struct k_msgq *q, void *data, s32_t timeout)
{
__ASSERT(!z_is_in_isr() || timeout == K_NO_WAIT, "");
k_spinlock_key_t key = k_spin_lock(&q->lock);
struct k_thread *pending_thread;
int result;
if (q->used_msgs > 0) {
/* take first available message from queue */
(void)memcpy(data, q->read_ptr, q->msg_size);
q->read_ptr += q->msg_size;
if (q->read_ptr == q->buffer_end) {
q->read_ptr = q->buffer_start;
}
q->used_msgs--;
/* handle first thread waiting to write (if any) */
pending_thread = z_unpend_first_thread(&q->wait_q);
if (pending_thread != NULL) {
/* add thread's message to queue */
(void)memcpy(q->write_ptr, pending_thread->base.swap_data,
q->msg_size);
q->write_ptr += q->msg_size;
if (q->write_ptr == q->buffer_end) {
q->write_ptr = q->buffer_start;
}
q->used_msgs++;
/* wake up waiting thread */
z_set_thread_return_value(pending_thread, 0);
z_ready_thread(pending_thread);
z_reschedule(&q->lock, key);
return 0;
}
result = 0;
} else if (timeout == K_NO_WAIT) {
/* don't wait for a message to become available */
result = -ENOMSG;
} else {
/* wait for get message success or timeout */
_current->base.swap_data = data;
return z_pend_curr(&q->lock, key, &q->wait_q, timeout);
}
k_spin_unlock(&q->lock, key);
return result;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_msgq_get, msgq_p, data, timeout)
{
struct k_msgq *q = (struct k_msgq *)msgq_p;
Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ));
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(data, q->msg_size));
return z_impl_k_msgq_get(q, (void *)data, timeout);
}
#endif
int z_impl_k_msgq_peek(struct k_msgq *q, void *data)
{
k_spinlock_key_t key = k_spin_lock(&q->lock);
int result;
if (q->used_msgs > 0) {
/* take first available message from queue */
(void)memcpy(data, q->read_ptr, q->msg_size);
result = 0;
} else {
/* don't wait for a message to become available */
result = -ENOMSG;
}
k_spin_unlock(&q->lock, key);
return result;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_msgq_peek, msgq_p, data)
{
struct k_msgq *q = (struct k_msgq *)msgq_p;
Z_OOPS(Z_SYSCALL_OBJ(q, K_OBJ_MSGQ));
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(data, q->msg_size));
return z_impl_k_msgq_peek(q, (void *)data);
}
#endif
void z_impl_k_msgq_purge(struct k_msgq *q)
{
k_spinlock_key_t key = k_spin_lock(&q->lock);
struct k_thread *pending_thread;
/* wake up any threads that are waiting to write */
while ((pending_thread = z_unpend_first_thread(&q->wait_q)) != NULL) {
z_set_thread_return_value(pending_thread, -ENOMSG);
z_ready_thread(pending_thread);
}
q->used_msgs = 0;
q->read_ptr = q->write_ptr;
z_reschedule(&q->lock, key);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_msgq_purge, K_OBJ_MSGQ, struct k_msgq *);
Z_SYSCALL_HANDLER1_SIMPLE(k_msgq_num_free_get, K_OBJ_MSGQ, struct k_msgq *);
Z_SYSCALL_HANDLER1_SIMPLE(k_msgq_num_used_get, K_OBJ_MSGQ, struct k_msgq *);
#endif