4344e27c26
Update reserved function names starting with one underscore, replacing them as follows: '_k_' with 'z_' '_K_' with 'Z_' '_handler_' with 'z_handl_' '_Cstart' with 'z_cstart' '_Swap' with 'z_swap' This renaming is done on both global and those static function names in kernel/include and include/. Other static function names in kernel/ are renamed by removing the leading underscore. Other function names not starting with any prefix listed above are renamed starting with a 'z_' or 'Z_' prefix. Function names starting with two or three leading underscores are not automatcally renamed since these names will collide with the variants with two or three leading underscores. Various generator scripts have also been updated as well as perf, linker and usb files. These are drivers/serial/uart_handlers.c include/linker/kobject-text.ld kernel/include/syscall_handler.h scripts/gen_kobject_list.py scripts/gen_syscall_header.py Signed-off-by: Patrik Flykt <patrik.flykt@intel.com>
264 lines
5 KiB
C
264 lines
5 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <timeout_q.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <sys_clock.h>
|
|
#include <spinlock.h>
|
|
#include <ksched.h>
|
|
#include <syscall_handler.h>
|
|
|
|
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
|
|
__key = k_spin_lock(lck); \
|
|
!__i.key; \
|
|
k_spin_unlock(lck, __key), __i.key = 1)
|
|
|
|
static u64_t curr_tick;
|
|
|
|
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
|
|
|
|
static struct k_spinlock timeout_lock;
|
|
|
|
static bool can_wait_forever;
|
|
|
|
/* Cycles left to process in the currently-executing z_clock_announce() */
|
|
static int announce_remaining;
|
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
|
|
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
|
|
#endif
|
|
|
|
static struct _timeout *first(void)
|
|
{
|
|
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
|
|
|
|
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
|
|
}
|
|
|
|
static struct _timeout *next(struct _timeout *t)
|
|
{
|
|
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
|
|
|
|
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
|
|
}
|
|
|
|
static void remove_timeout(struct _timeout *t)
|
|
{
|
|
if (next(t) != NULL) {
|
|
next(t)->dticks += t->dticks;
|
|
}
|
|
|
|
sys_dlist_remove(&t->node);
|
|
}
|
|
|
|
static s32_t elapsed(void)
|
|
{
|
|
return announce_remaining == 0 ? z_clock_elapsed() : 0;
|
|
}
|
|
|
|
static s32_t next_timeout(void)
|
|
{
|
|
int maxw = can_wait_forever ? K_FOREVER : INT_MAX;
|
|
struct _timeout *to = first();
|
|
s32_t ret = to == NULL ? maxw : MAX(0, to->dticks - elapsed());
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
|
|
ret = _current_cpu->slice_ticks;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void z_add_timeout(struct _timeout *to, _timeout_func_t fn, s32_t ticks)
|
|
{
|
|
__ASSERT(!sys_dnode_is_linked(&to->node), "");
|
|
to->fn = fn;
|
|
ticks = MAX(1, ticks);
|
|
|
|
LOCKED(&timeout_lock) {
|
|
struct _timeout *t;
|
|
|
|
to->dticks = ticks + elapsed();
|
|
for (t = first(); t != NULL; t = next(t)) {
|
|
__ASSERT(t->dticks >= 0, "");
|
|
|
|
if (t->dticks > to->dticks) {
|
|
t->dticks -= to->dticks;
|
|
sys_dlist_insert(&t->node, &to->node);
|
|
break;
|
|
}
|
|
to->dticks -= t->dticks;
|
|
}
|
|
|
|
if (t == NULL) {
|
|
sys_dlist_append(&timeout_list, &to->node);
|
|
}
|
|
|
|
if (to == first()) {
|
|
z_clock_set_timeout(next_timeout(), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
int z_abort_timeout(struct _timeout *to)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
if (sys_dnode_is_linked(&to->node)) {
|
|
remove_timeout(to);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
s32_t z_timeout_remaining(struct _timeout *timeout)
|
|
{
|
|
s32_t ticks = 0;
|
|
|
|
if (z_is_inactive_timeout(timeout)) {
|
|
return 0;
|
|
}
|
|
|
|
LOCKED(&timeout_lock) {
|
|
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
|
|
ticks += t->dticks;
|
|
if (timeout == t) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ticks - elapsed();
|
|
}
|
|
|
|
s32_t z_get_next_timeout_expiry(void)
|
|
{
|
|
s32_t ret = K_FOREVER;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
ret = next_timeout();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void z_set_timeout_expiry(s32_t ticks, bool idle)
|
|
{
|
|
LOCKED(&timeout_lock) {
|
|
int next = next_timeout();
|
|
bool sooner = (next == K_FOREVER) || (ticks < next);
|
|
bool imminent = next <= 1;
|
|
|
|
/* Only set new timeouts when they are sooner than
|
|
* what we have. Also don't try to set a timeout when
|
|
* one is about to expire: drivers have internal logic
|
|
* that will bump the timeout to the "next" tick if
|
|
* it's not considered to be settable as directed.
|
|
*/
|
|
if (sooner && !imminent) {
|
|
z_clock_set_timeout(ticks, idle);
|
|
}
|
|
}
|
|
}
|
|
|
|
void z_clock_announce(s32_t ticks)
|
|
{
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_time_slice(ticks);
|
|
#endif
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
|
|
|
|
announce_remaining = ticks;
|
|
|
|
while (first() != NULL && first()->dticks <= announce_remaining) {
|
|
struct _timeout *t = first();
|
|
int dt = t->dticks;
|
|
|
|
curr_tick += dt;
|
|
announce_remaining -= dt;
|
|
t->dticks = 0;
|
|
remove_timeout(t);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
t->fn(t);
|
|
key = k_spin_lock(&timeout_lock);
|
|
}
|
|
|
|
if (first() != NULL) {
|
|
first()->dticks -= announce_remaining;
|
|
}
|
|
|
|
curr_tick += announce_remaining;
|
|
announce_remaining = 0;
|
|
|
|
z_clock_set_timeout(next_timeout(), false);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
}
|
|
|
|
int k_enable_sys_clock_always_on(void)
|
|
{
|
|
int ret = !can_wait_forever;
|
|
|
|
can_wait_forever = 0;
|
|
return ret;
|
|
}
|
|
|
|
void k_disable_sys_clock_always_on(void)
|
|
{
|
|
can_wait_forever = 1;
|
|
}
|
|
|
|
s64_t z_tick_get(void)
|
|
{
|
|
u64_t t = 0U;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
t = curr_tick + z_clock_elapsed();
|
|
}
|
|
return t;
|
|
}
|
|
|
|
u32_t z_tick_get_32(void)
|
|
{
|
|
#ifdef CONFIG_TICKLESS_KERNEL
|
|
return (u32_t)z_tick_get();
|
|
#else
|
|
return (u32_t)curr_tick;
|
|
#endif
|
|
}
|
|
|
|
u32_t z_impl_k_uptime_get_32(void)
|
|
{
|
|
return __ticks_to_ms(z_tick_get_32());
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_uptime_get_32)
|
|
{
|
|
return z_impl_k_uptime_get_32();
|
|
}
|
|
#endif
|
|
|
|
s64_t z_impl_k_uptime_get(void)
|
|
{
|
|
return __ticks_to_ms(z_tick_get());
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_uptime_get, ret_p)
|
|
{
|
|
u64_t *ret = (u64_t *)ret_p;
|
|
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret)));
|
|
*ret = z_impl_k_uptime_get();
|
|
return 0;
|
|
}
|
|
#endif
|