b4ece0ad44
Whether a timeout is linked into the timeout queue can be determined from the corresponding sys_dnode_t linked state. This removes the need to use a special flag value in dticks to determine that the timeout is inactive. Update _abort_timeout to return an error code, rather than the flag value, when the timeout to be aborted was not active. Remove the _INACTIVE flag value, and replace its external uses with an internal API function that checks whether a timeout is inactive. Signed-off-by: Peter A. Bigot <pab@pabigot.com>
934 lines
20 KiB
C
934 lines
20 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <kernel.h>
|
|
#include <ksched.h>
|
|
#include <spinlock.h>
|
|
#include <sched_priq.h>
|
|
#include <wait_q.h>
|
|
#include <kswap.h>
|
|
#include <kernel_arch_func.h>
|
|
#include <syscall_handler.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <stdbool.h>
|
|
|
|
#if defined(CONFIG_SCHED_DUMB)
|
|
#define _priq_run_add _priq_dumb_add
|
|
#define _priq_run_remove _priq_dumb_remove
|
|
#define _priq_run_best _priq_dumb_best
|
|
#elif defined(CONFIG_SCHED_SCALABLE)
|
|
#define _priq_run_add _priq_rb_add
|
|
#define _priq_run_remove _priq_rb_remove
|
|
#define _priq_run_best _priq_rb_best
|
|
#elif defined(CONFIG_SCHED_MULTIQ)
|
|
#define _priq_run_add _priq_mq_add
|
|
#define _priq_run_remove _priq_mq_remove
|
|
#define _priq_run_best _priq_mq_best
|
|
#endif
|
|
|
|
#if defined(CONFIG_WAITQ_SCALABLE)
|
|
#define _priq_wait_add _priq_rb_add
|
|
#define _priq_wait_remove _priq_rb_remove
|
|
#define _priq_wait_best _priq_rb_best
|
|
#elif defined(CONFIG_WAITQ_DUMB)
|
|
#define _priq_wait_add _priq_dumb_add
|
|
#define _priq_wait_remove _priq_dumb_remove
|
|
#define _priq_wait_best _priq_dumb_best
|
|
#endif
|
|
|
|
/* the only struct z_kernel instance */
|
|
struct z_kernel _kernel;
|
|
|
|
static struct k_spinlock sched_lock;
|
|
|
|
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
|
|
__key = k_spin_lock(lck); \
|
|
!__i.key; \
|
|
k_spin_unlock(lck, __key), __i.key = 1)
|
|
|
|
static inline int _is_preempt(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_PREEMPT_ENABLED
|
|
/* explanation in kernel_struct.h */
|
|
return thread->base.preempt <= _PREEMPT_THRESHOLD;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline int is_metairq(struct k_thread *thread)
|
|
{
|
|
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0
|
|
return (thread->base.prio - K_HIGHEST_THREAD_PRIO)
|
|
< CONFIG_NUM_METAIRQ_PRIORITIES;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_ASSERT
|
|
static inline int _is_thread_dummy(struct k_thread *thread)
|
|
{
|
|
return !!(thread->base.thread_state & _THREAD_DUMMY);
|
|
}
|
|
#endif
|
|
|
|
static inline bool _is_idle(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return thread->base.is_idle;
|
|
#else
|
|
extern k_tid_t const _idle_thread;
|
|
|
|
return thread == _idle_thread;
|
|
#endif
|
|
}
|
|
|
|
bool _is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2)
|
|
{
|
|
if (t1->base.prio < t2->base.prio) {
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
/* Note that we don't care about wraparound conditions. The
|
|
* expectation is that the application will have arranged to
|
|
* block the threads, change their priorities or reset their
|
|
* deadlines when the job is complete. Letting the deadlines
|
|
* go negative is fine and in fact prevents aliasing bugs.
|
|
*/
|
|
if (t1->base.prio == t2->base.prio) {
|
|
int now = (int) k_cycle_get_32();
|
|
int dt1 = t1->base.prio_deadline - now;
|
|
int dt2 = t2->base.prio_deadline - now;
|
|
|
|
return dt1 < dt2;
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool should_preempt(struct k_thread *th, int preempt_ok)
|
|
{
|
|
/* Preemption is OK if it's being explicitly allowed by
|
|
* software state (e.g. the thread called k_yield())
|
|
*/
|
|
if (preempt_ok != 0) {
|
|
return true;
|
|
}
|
|
|
|
/* Or if we're pended/suspended/dummy (duh) */
|
|
if (!_current || _is_thread_prevented_from_running(_current)) {
|
|
return true;
|
|
}
|
|
|
|
/* Edge case on ARM where a thread can be pended out of an
|
|
* interrupt handler before the "synchronous" swap starts
|
|
* context switching. Platforms with atomic swap can never
|
|
* hit this.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SWAP_NONATOMIC)
|
|
&& _is_thread_timeout_active(th)) {
|
|
return true;
|
|
}
|
|
|
|
/* Otherwise we have to be running a preemptible thread or
|
|
* switching to a metairq
|
|
*/
|
|
if (_is_preempt(_current) || is_metairq(th)) {
|
|
return true;
|
|
}
|
|
|
|
/* The idle threads can look "cooperative" if there are no
|
|
* preemptible priorities (this is sort of an API glitch).
|
|
* They must always be preemptible.
|
|
*/
|
|
if (_is_idle(_current)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static struct k_thread *next_up(void)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
/* In uniprocessor mode, we can leave the current thread in
|
|
* the queue (actually we have to, otherwise the assembly
|
|
* context switch code for all architectures would be
|
|
* responsible for putting it back in _Swap and ISR return!),
|
|
* which makes this choice simple.
|
|
*/
|
|
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
|
|
|
|
return th ? th : _current_cpu->idle_thread;
|
|
#else
|
|
|
|
/* Under SMP, the "cache" mechanism for selecting the next
|
|
* thread doesn't work, so we have more work to do to test
|
|
* _current against the best choice from the queue.
|
|
*
|
|
* Subtle note on "queued": in SMP mode, _current does not
|
|
* live in the queue, so this isn't exactly the same thing as
|
|
* "ready", it means "is _current already added back to the
|
|
* queue such that we don't want to re-add it".
|
|
*/
|
|
int queued = _is_thread_queued(_current);
|
|
int active = !_is_thread_prevented_from_running(_current);
|
|
|
|
/* Choose the best thread that is not current */
|
|
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
|
|
if (th == NULL) {
|
|
th = _current_cpu->idle_thread;
|
|
}
|
|
|
|
if (active) {
|
|
if (!queued &&
|
|
!_is_t1_higher_prio_than_t2(th, _current)) {
|
|
th = _current;
|
|
}
|
|
|
|
if (!should_preempt(th, _current_cpu->swap_ok)) {
|
|
th = _current;
|
|
}
|
|
}
|
|
|
|
/* Put _current back into the queue */
|
|
if (th != _current && active && !_is_idle(_current) && !queued) {
|
|
_priq_run_add(&_kernel.ready_q.runq, _current);
|
|
_mark_thread_as_queued(_current);
|
|
}
|
|
|
|
/* Take the new _current out of the queue */
|
|
if (_is_thread_queued(th)) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, th);
|
|
}
|
|
_mark_thread_as_not_queued(th);
|
|
|
|
return th;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
|
|
static int slice_time;
|
|
static int slice_max_prio;
|
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
/* If _Swap() isn't atomic, then it's possible for a timer interrupt
|
|
* to try to timeslice away _current after it has already pended
|
|
* itself but before the corresponding context switch. Treat that as
|
|
* a noop condition in z_time_slice().
|
|
*/
|
|
static struct k_thread *pending_current;
|
|
#endif
|
|
|
|
static void reset_time_slice(void)
|
|
{
|
|
/* Add the elapsed time since the last announced tick to the
|
|
* slice count, as we'll see those "expired" ticks arrive in a
|
|
* FUTURE z_time_slice() call.
|
|
*/
|
|
_current_cpu->slice_ticks = slice_time + z_clock_elapsed();
|
|
|
|
z_set_timeout_expiry(slice_time, false);
|
|
}
|
|
|
|
void k_sched_time_slice_set(s32_t slice, int prio)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_current_cpu->slice_ticks = 0;
|
|
slice_time = _ms_to_ticks(slice);
|
|
slice_max_prio = prio;
|
|
reset_time_slice();
|
|
}
|
|
}
|
|
|
|
static inline int sliceable(struct k_thread *t)
|
|
{
|
|
return _is_preempt(t)
|
|
&& !_is_prio_higher(t->base.prio, slice_max_prio)
|
|
&& !_is_idle(t)
|
|
&& !_is_thread_timeout_active(t);
|
|
}
|
|
|
|
/* Called out of each timer interrupt */
|
|
void z_time_slice(int ticks)
|
|
{
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
if (pending_current == _current) {
|
|
pending_current = NULL;
|
|
reset_time_slice();
|
|
return;
|
|
}
|
|
pending_current = NULL;
|
|
#endif
|
|
|
|
if (slice_time && sliceable(_current)) {
|
|
if (ticks >= _current_cpu->slice_ticks) {
|
|
_move_thread_to_end_of_prio_q(_current);
|
|
reset_time_slice();
|
|
} else {
|
|
_current_cpu->slice_ticks -= ticks;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static void reset_time_slice(void) { /* !CONFIG_TIMESLICING */ }
|
|
#endif
|
|
|
|
static void update_cache(int preempt_ok)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
struct k_thread *th = next_up();
|
|
|
|
if (should_preempt(th, preempt_ok)) {
|
|
if (th != _current) {
|
|
reset_time_slice();
|
|
}
|
|
_kernel.ready_q.cache = th;
|
|
} else {
|
|
_kernel.ready_q.cache = _current;
|
|
}
|
|
|
|
#else
|
|
/* The way this works is that the CPU record keeps its
|
|
* "cooperative swapping is OK" flag until the next reschedule
|
|
* call or context switch. It doesn't need to be tracked per
|
|
* thread because if the thread gets preempted for whatever
|
|
* reason the scheduler will make the same decision anyway.
|
|
*/
|
|
_current_cpu->swap_ok = preempt_ok;
|
|
#endif
|
|
}
|
|
|
|
void _add_thread_to_ready_q(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_priq_run_add(&_kernel.ready_q.runq, thread);
|
|
_mark_thread_as_queued(thread);
|
|
update_cache(0);
|
|
}
|
|
}
|
|
|
|
void _move_thread_to_end_of_prio_q(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, thread);
|
|
_priq_run_add(&_kernel.ready_q.runq, thread);
|
|
_mark_thread_as_queued(thread);
|
|
update_cache(thread == _current);
|
|
}
|
|
}
|
|
|
|
void _remove_thread_from_ready_q(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
if (_is_thread_queued(thread)) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, thread);
|
|
_mark_thread_as_not_queued(thread);
|
|
update_cache(thread == _current);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
|
|
{
|
|
_remove_thread_from_ready_q(thread);
|
|
_mark_thread_as_pending(thread);
|
|
|
|
if (wait_q != NULL) {
|
|
thread->base.pended_on = wait_q;
|
|
_priq_wait_add(&wait_q->waitq, thread);
|
|
}
|
|
|
|
if (timeout != K_FOREVER) {
|
|
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(timeout);
|
|
|
|
_add_thread_timeout(thread, ticks);
|
|
}
|
|
|
|
sys_trace_thread_pend(thread);
|
|
}
|
|
|
|
void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
|
|
{
|
|
__ASSERT_NO_MSG(thread == _current || _is_thread_dummy(thread));
|
|
pend(thread, wait_q, timeout);
|
|
}
|
|
|
|
static _wait_q_t *pended_on(struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(thread->base.pended_on);
|
|
|
|
return thread->base.pended_on;
|
|
}
|
|
|
|
struct k_thread *_find_first_thread_to_unpend(_wait_q_t *wait_q,
|
|
struct k_thread *from)
|
|
{
|
|
ARG_UNUSED(from);
|
|
|
|
struct k_thread *ret = NULL;
|
|
|
|
LOCKED(&sched_lock) {
|
|
ret = _priq_wait_best(&wait_q->waitq);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void _unpend_thread_no_timeout(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_priq_wait_remove(&pended_on(thread)->waitq, thread);
|
|
_mark_thread_as_not_pending(thread);
|
|
}
|
|
|
|
thread->base.pended_on = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
/* Timeout handler for *_thread_timeout() APIs */
|
|
void z_thread_timeout(struct _timeout *to)
|
|
{
|
|
struct k_thread *th = CONTAINER_OF(to, struct k_thread, base.timeout);
|
|
|
|
if (th->base.pended_on != NULL) {
|
|
_unpend_thread_no_timeout(th);
|
|
}
|
|
_mark_thread_as_started(th);
|
|
_ready_thread(th);
|
|
}
|
|
#endif
|
|
|
|
int _pend_current_thread(u32_t key, _wait_q_t *wait_q, s32_t timeout)
|
|
{
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
#endif
|
|
pend(_current, wait_q, timeout);
|
|
return _Swap(key);
|
|
}
|
|
|
|
struct k_thread *_unpend_first_thread(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *t = _unpend1_no_timeout(wait_q);
|
|
|
|
if (t != NULL) {
|
|
(void)_abort_thread_timeout(t);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
void _unpend_thread(struct k_thread *thread)
|
|
{
|
|
_unpend_thread_no_timeout(thread);
|
|
(void)_abort_thread_timeout(thread);
|
|
}
|
|
|
|
/* FIXME: this API is glitchy when used in SMP. If the thread is
|
|
* currently scheduled on the other CPU, it will silently set it's
|
|
* priority but nothing will cause a reschedule until the next
|
|
* interrupt. An audit seems to show that all current usage is to set
|
|
* priorities on either _current or a pended thread, though, so it's
|
|
* fine for now.
|
|
*/
|
|
void _thread_priority_set(struct k_thread *thread, int prio)
|
|
{
|
|
bool need_sched = 0;
|
|
|
|
LOCKED(&sched_lock) {
|
|
need_sched = _is_thread_ready(thread);
|
|
|
|
if (need_sched) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, thread);
|
|
thread->base.prio = prio;
|
|
_priq_run_add(&_kernel.ready_q.runq, thread);
|
|
update_cache(1);
|
|
} else {
|
|
thread->base.prio = prio;
|
|
}
|
|
}
|
|
sys_trace_thread_priority_set(thread);
|
|
|
|
if (need_sched) {
|
|
_reschedule(irq_lock());
|
|
}
|
|
}
|
|
|
|
void _reschedule(u32_t key)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (!_current_cpu->swap_ok) {
|
|
goto noswap;
|
|
}
|
|
|
|
_current_cpu->swap_ok = 0;
|
|
#endif
|
|
|
|
if (_is_in_isr()) {
|
|
goto noswap;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
(void)_Swap(key);
|
|
return;
|
|
#else
|
|
if (_get_next_ready_thread() != _current) {
|
|
(void)_Swap(key);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
noswap:
|
|
irq_unlock(key);
|
|
}
|
|
|
|
void k_sched_lock(void)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_sched_lock();
|
|
}
|
|
}
|
|
|
|
void k_sched_unlock(void)
|
|
{
|
|
#ifdef CONFIG_PREEMPT_ENABLED
|
|
__ASSERT(_current->base.sched_locked != 0, "");
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
LOCKED(&sched_lock) {
|
|
++_current->base.sched_locked;
|
|
update_cache(1);
|
|
}
|
|
|
|
K_DEBUG("scheduler unlocked (%p:%d)\n",
|
|
_current, _current->base.sched_locked);
|
|
|
|
_reschedule(irq_lock());
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct k_thread *_get_next_ready_thread(void)
|
|
{
|
|
struct k_thread *ret = 0;
|
|
|
|
LOCKED(&sched_lock) {
|
|
ret = next_up();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_USE_SWITCH
|
|
void *_get_next_switch_handle(void *interrupted)
|
|
{
|
|
_current->switch_handle = interrupted;
|
|
|
|
#ifdef CONFIG_SMP
|
|
LOCKED(&sched_lock) {
|
|
struct k_thread *th = next_up();
|
|
|
|
if (_current != th) {
|
|
reset_time_slice();
|
|
_current_cpu->swap_ok = 0;
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_out();
|
|
#endif
|
|
_current = th;
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_in();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#else
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_out();
|
|
#endif
|
|
_current = _get_next_ready_thread();
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_in();
|
|
#endif
|
|
#endif
|
|
|
|
_check_stack_sentinel();
|
|
|
|
return _current->switch_handle;
|
|
}
|
|
#endif
|
|
|
|
void _priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread)
|
|
{
|
|
struct k_thread *t;
|
|
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
|
|
if (_is_t1_higher_prio_than_t2(thread, t)) {
|
|
sys_dlist_insert_before(pq, &t->base.qnode_dlist,
|
|
&thread->base.qnode_dlist);
|
|
return;
|
|
}
|
|
}
|
|
|
|
sys_dlist_append(pq, &thread->base.qnode_dlist);
|
|
}
|
|
|
|
void _priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
sys_dlist_remove(&thread->base.qnode_dlist);
|
|
}
|
|
|
|
struct k_thread *_priq_dumb_best(sys_dlist_t *pq)
|
|
{
|
|
struct k_thread *t = NULL;
|
|
sys_dnode_t *n = sys_dlist_peek_head(pq);
|
|
|
|
if (n != NULL) {
|
|
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
bool _priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
|
|
{
|
|
struct k_thread *ta, *tb;
|
|
|
|
ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
|
|
tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb);
|
|
|
|
if (_is_t1_higher_prio_than_t2(ta, tb)) {
|
|
return true;
|
|
} else if (_is_t1_higher_prio_than_t2(tb, ta)) {
|
|
return false;
|
|
} else {
|
|
return ta->base.order_key < tb->base.order_key ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
void _priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
|
|
{
|
|
struct k_thread *t;
|
|
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
thread->base.order_key = pq->next_order_key++;
|
|
|
|
/* Renumber at wraparound. This is tiny code, and in practice
|
|
* will almost never be hit on real systems. BUT on very
|
|
* long-running systems where a priq never completely empties
|
|
* AND that contains very large numbers of threads, it can be
|
|
* a latency glitch to loop over all the threads like this.
|
|
*/
|
|
if (!pq->next_order_key) {
|
|
RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
|
|
t->base.order_key = pq->next_order_key++;
|
|
}
|
|
}
|
|
|
|
rb_insert(&pq->tree, &thread->base.qnode_rb);
|
|
}
|
|
|
|
void _priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
rb_remove(&pq->tree, &thread->base.qnode_rb);
|
|
|
|
if (!pq->tree.root) {
|
|
pq->next_order_key = 0;
|
|
}
|
|
}
|
|
|
|
struct k_thread *_priq_rb_best(struct _priq_rb *pq)
|
|
{
|
|
struct k_thread *t = NULL;
|
|
struct rbnode *n = rb_get_min(&pq->tree);
|
|
|
|
if (n != NULL) {
|
|
t = CONTAINER_OF(n, struct k_thread, base.qnode_rb);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_MULTIQ
|
|
# if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31
|
|
# error Too many priorities for multiqueue scheduler (max 32)
|
|
# endif
|
|
#endif
|
|
|
|
void _priq_mq_add(struct _priq_mq *pq, struct k_thread *thread)
|
|
{
|
|
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
|
|
|
|
sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist);
|
|
pq->bitmask |= (1 << priority_bit);
|
|
}
|
|
|
|
void _priq_mq_remove(struct _priq_mq *pq, struct k_thread *thread)
|
|
{
|
|
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
|
|
|
|
sys_dlist_remove(&thread->base.qnode_dlist);
|
|
if (sys_dlist_is_empty(&pq->queues[priority_bit])) {
|
|
pq->bitmask &= ~(1 << priority_bit);
|
|
}
|
|
}
|
|
|
|
struct k_thread *_priq_mq_best(struct _priq_mq *pq)
|
|
{
|
|
if (!pq->bitmask) {
|
|
return NULL;
|
|
}
|
|
|
|
struct k_thread *t = NULL;
|
|
sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)];
|
|
sys_dnode_t *n = sys_dlist_peek_head(l);
|
|
|
|
if (n != NULL) {
|
|
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
int _unpend_all(_wait_q_t *wait_q)
|
|
{
|
|
int need_sched = 0;
|
|
struct k_thread *th;
|
|
|
|
while ((th = _waitq_head(wait_q)) != NULL) {
|
|
_unpend_thread(th);
|
|
_ready_thread(th);
|
|
need_sched = 1;
|
|
}
|
|
|
|
return need_sched;
|
|
}
|
|
|
|
void _sched_init(void)
|
|
{
|
|
#ifdef CONFIG_SCHED_DUMB
|
|
sys_dlist_init(&_kernel.ready_q.runq);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_SCALABLE
|
|
_kernel.ready_q.runq = (struct _priq_rb) {
|
|
.tree = {
|
|
.lessthan_fn = _priq_rb_lessthan,
|
|
}
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_MULTIQ
|
|
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
|
|
sys_dlist_init(&_kernel.ready_q.runq.queues[i]);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE,
|
|
CONFIG_TIMESLICE_PRIORITY);
|
|
#endif
|
|
}
|
|
|
|
int _impl_k_thread_priority_get(k_tid_t thread)
|
|
{
|
|
return thread->base.prio;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD,
|
|
struct k_thread *);
|
|
#endif
|
|
|
|
void _impl_k_thread_priority_set(k_tid_t tid, int prio)
|
|
{
|
|
/*
|
|
* Use NULL, since we cannot know what the entry point is (we do not
|
|
* keep track of it) and idle cannot change its priority.
|
|
*/
|
|
_ASSERT_VALID_PRIO(prio, NULL);
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
struct k_thread *thread = (struct k_thread *)tid;
|
|
|
|
_thread_priority_set(thread, prio);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio)
|
|
{
|
|
struct k_thread *thread = (struct k_thread *)thread_p;
|
|
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
|
|
"invalid thread priority %d", (int)prio));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio,
|
|
"thread priority may only be downgraded (%d < %d)",
|
|
prio, thread->base.prio));
|
|
|
|
_impl_k_thread_priority_set((k_tid_t)thread, prio);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
void _impl_k_thread_deadline_set(k_tid_t tid, int deadline)
|
|
{
|
|
struct k_thread *th = tid;
|
|
|
|
LOCKED(&sched_lock) {
|
|
th->base.prio_deadline = k_cycle_get_32() + deadline;
|
|
if (_is_thread_queued(th)) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, th);
|
|
_priq_run_add(&_kernel.ready_q.runq, th);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_thread_deadline_set, thread_p, deadline)
|
|
{
|
|
struct k_thread *thread = (struct k_thread *)thread_p;
|
|
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0,
|
|
"invalid thread deadline %d",
|
|
(int)deadline));
|
|
|
|
_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
|
|
return 0;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void _impl_k_yield(void)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
if (!_is_idle(_current)) {
|
|
LOCKED(&sched_lock) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, _current);
|
|
_priq_run_add(&_kernel.ready_q.runq, _current);
|
|
update_cache(1);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
(void)_Swap(irq_lock());
|
|
#else
|
|
if (_get_next_ready_thread() != _current) {
|
|
(void)_Swap(irq_lock());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield);
|
|
#endif
|
|
|
|
s32_t _impl_k_sleep(s32_t duration)
|
|
{
|
|
#ifdef CONFIG_MULTITHREADING
|
|
u32_t expected_wakeup_time;
|
|
s32_t ticks;
|
|
unsigned int key;
|
|
|
|
__ASSERT(!_is_in_isr(), "");
|
|
__ASSERT(duration != K_FOREVER, "");
|
|
|
|
K_DEBUG("thread %p for %d ns\n", _current, duration);
|
|
|
|
/* wait of 0 ms is treated as a 'yield' */
|
|
if (duration == 0) {
|
|
k_yield();
|
|
return 0;
|
|
}
|
|
|
|
ticks = _TICK_ALIGN + _ms_to_ticks(duration);
|
|
expected_wakeup_time = ticks + z_tick_get_32();
|
|
key = irq_lock();
|
|
|
|
_remove_thread_from_ready_q(_current);
|
|
_add_thread_timeout(_current, ticks);
|
|
|
|
(void)_Swap(key);
|
|
|
|
ticks = expected_wakeup_time - z_tick_get_32();
|
|
if (ticks > 0) {
|
|
return __ticks_to_ms(ticks);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_sleep, duration)
|
|
{
|
|
/* FIXME there were some discussions recently on whether we should
|
|
* relax this, thread would be unscheduled until k_wakeup issued
|
|
*/
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(duration != K_FOREVER,
|
|
"sleeping forever not allowed"));
|
|
|
|
return _impl_k_sleep(duration);
|
|
}
|
|
#endif
|
|
|
|
void _impl_k_wakeup(k_tid_t thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
/* verify first if thread is not waiting on an object */
|
|
if (_is_thread_pending(thread)) {
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
if (_abort_thread_timeout(thread) < 0) {
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
_ready_thread(thread);
|
|
|
|
if (_is_in_isr()) {
|
|
irq_unlock(key);
|
|
} else {
|
|
_reschedule(key);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t);
|
|
#endif
|
|
|
|
k_tid_t _impl_k_current_get(void)
|
|
{
|
|
return _current;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER0_SIMPLE(k_current_get);
|
|
#endif
|
|
|
|
int _impl_k_is_preempt_thread(void)
|
|
{
|
|
return !_is_in_isr() && _is_preempt(_current);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread);
|
|
#endif
|