zephyr/drivers/adc/adc_numaker.c
cyliang tw 9ad8e1ab74 drivers: adc: support Nuvoton numaker series
Add Nuvoton numaker series adc controller, including async read feature.

Signed-off-by: cyliang tw <cyliang@nuvoton.com>
2024-01-02 10:10:27 +01:00

396 lines
12 KiB
C

/*
* Copyright (c) 2023 Nuvoton Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_numaker_adc
#include <zephyr/kernel.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/clock_control_numaker.h>
#include <zephyr/logging/log.h>
#include <soc.h>
#include <NuMicro.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
LOG_MODULE_REGISTER(adc_numaker, CONFIG_ADC_LOG_LEVEL);
/* Device config */
struct adc_numaker_config {
/* eadc base address */
EADC_T *eadc_base;
uint8_t channel_cnt;
const struct reset_dt_spec reset;
/* clock configuration */
uint32_t clk_modidx;
uint32_t clk_src;
uint32_t clk_div;
const struct device *clk_dev;
const struct pinctrl_dev_config *pincfg;
void (*irq_config_func)(const struct device *dev);
};
/* Driver context/data */
struct adc_numaker_data {
struct adc_context ctx;
const struct device *dev;
uint16_t *buffer;
uint16_t *buf_end;
uint16_t *repeat_buffer;
bool is_differential;
uint32_t channels;
};
static int adc_numaker_channel_setup(const struct device *dev,
const struct adc_channel_cfg *chan_cfg)
{
const struct adc_numaker_config *cfg = dev->config;
struct adc_numaker_data *data = dev->data;
if (chan_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Not support acquisition time");
return -ENOTSUP;
}
if (chan_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Not support channel gain");
return -ENOTSUP;
}
if (chan_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Not support channel reference");
return -ENOTSUP;
}
if (chan_cfg->channel_id >= cfg->channel_cnt) {
LOG_ERR("Invalid channel (%u)", chan_cfg->channel_id);
return -EINVAL;
}
data->is_differential = (chan_cfg->differential) ? true : false;
return 0;
}
static int m_adc_numaker_validate_buffer_size(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct adc_numaker_config *cfg = dev->config;
uint8_t channel_cnt = 0;
uint32_t mask;
size_t needed_size;
for (mask = BIT(cfg->channel_cnt - 1); mask != 0; mask >>= 1) {
if (mask & sequence->channels) {
channel_cnt++;
}
}
needed_size = channel_cnt * sizeof(uint16_t);
if (sequence->options) {
needed_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_size) {
return -ENOBUFS;
}
return 0;
}
static void adc_numaker_isr(const struct device *dev)
{
const struct adc_numaker_config *cfg = dev->config;
EADC_T *eadc = cfg->eadc_base;
struct adc_numaker_data *const data = dev->data;
uint32_t channel_mask = data->channels;
uint32_t module_mask = channel_mask;
uint32_t module_id;
uint16_t conv_data;
uint32_t pend_flag;
/* Clear pending flag first */
pend_flag = eadc->PENDSTS;
eadc->PENDSTS = pend_flag;
LOG_DBG("ADC ISR pend flag: 0x%X\n", pend_flag);
LOG_DBG("ADC ISR STATUS2[0x%x] STATUS3[0x%x]", eadc->STATUS2, eadc->STATUS3);
/* Complete the conversion of channels.
* Check EAC idle by EADC_STATUS2_BUSY_Msk
* Check trigger source coming by EADC_STATUS2_ADOVIF_Msk
* Confirm all sample modules are idle by EADC_STATUS2_ADOVIF_Msk
*/
if (!(eadc->STATUS2 & EADC_STATUS2_BUSY_Msk) &&
((eadc->STATUS3 & EADC_STATUS3_CURSPL_Msk) == EADC_STATUS3_CURSPL_Msk)) {
/* Stop the conversion for sample module */
EADC_STOP_CONV(eadc, module_mask);
/* Disable sample module A/D ADINT0 interrupt. */
EADC_DISABLE_INT(eadc, BIT0);
/* Disable the sample module ADINT0 interrupt source */
EADC_DISABLE_SAMPLE_MODULE_INT(eadc, 0, module_mask);
/* Get conversion data of each sample module for selected channel */
while (module_mask) {
module_id = find_lsb_set(module_mask) - 1;
conv_data = EADC_GET_CONV_DATA(eadc, module_id);
if (data->buffer < data->buf_end) {
*data->buffer++ = conv_data;
LOG_DBG("ADC ISR id=%d, data=0x%x", module_id, conv_data);
}
module_mask &= ~BIT(module_id);
/* Disable all channels on each sample module */
eadc->SCTL[module_id] = 0;
}
/* Disable ADC */
EADC_Close(eadc);
/* Inform sampling is done */
adc_context_on_sampling_done(&data->ctx, data->dev);
}
/* Clear the A/D ADINT0 interrupt flag */
EADC_CLR_INT_FLAG(eadc, EADC_STATUS2_ADIF0_Msk);
}
static void m_adc_numaker_start_scan(const struct device *dev)
{
const struct adc_numaker_config *cfg = dev->config;
EADC_T *eadc = cfg->eadc_base;
struct adc_numaker_data *const data = dev->data;
uint32_t channel_mask = data->channels;
uint32_t module_mask = channel_mask;
uint32_t channel_id;
uint32_t module_id;
/* Configure the sample module, analog input channel and software trigger source */
while (channel_mask) {
channel_id = find_lsb_set(channel_mask) - 1;
module_id = channel_id;
channel_mask &= ~BIT(channel_id);
EADC_ConfigSampleModule(eadc, module_id,
EADC_SOFTWARE_TRIGGER, channel_id);
}
/* Clear the A/D ADINT0 interrupt flag for safe */
EADC_CLR_INT_FLAG(eadc, EADC_STATUS2_ADIF0_Msk);
/* Enable sample module A/D ADINT0 interrupt. */
EADC_ENABLE_INT(eadc, BIT0);
/* Enable sample module interrupt ADINT0. */
EADC_ENABLE_SAMPLE_MODULE_INT(eadc, 0, module_mask);
/* Start conversion */
EADC_START_CONV(eadc, module_mask);
}
/* Implement ADC API functions of adc_context.h
* - adc_context_start_sampling()
* - adc_context_update_buffer_pointer()
*/
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_numaker_data *const data =
CONTAINER_OF(ctx, struct adc_numaker_data, ctx);
data->repeat_buffer = data->buffer;
data->channels = ctx->sequence.channels;
/* Start ADC conversion for sample modules/channels */
m_adc_numaker_start_scan(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_numaker_data *data =
CONTAINER_OF(ctx, struct adc_numaker_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int m_adc_numaker_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct adc_numaker_config *cfg = dev->config;
struct adc_numaker_data *data = dev->data;
EADC_T *eadc = cfg->eadc_base;
int err;
err = m_adc_numaker_validate_buffer_size(dev, sequence);
if (err) {
LOG_ERR("ADC provided buffer is too small");
return err;
}
if (!sequence->resolution) {
LOG_ERR("ADC resolution is not valid");
return -EINVAL;
}
LOG_DBG("Configure resolution=%d", sequence->resolution);
/* Enable the A/D converter */
if (data->is_differential) {
err = EADC_Open(eadc, EADC_CTL_DIFFEN_DIFFERENTIAL);
} else {
err = EADC_Open(eadc, EADC_CTL_DIFFEN_SINGLE_END);
}
if (err) {
LOG_ERR("ADC Open fail (%u)", err);
return -ENODEV;
}
data->buffer = sequence->buffer;
data->buf_end = data->buffer + sequence->buffer_size / sizeof(uint16_t);
/* Start ADC conversion */
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_numaker_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_numaker_data *data = dev->data;
int err;
adc_context_lock(&data->ctx, false, NULL);
err = m_adc_numaker_start_read(dev, sequence);
adc_context_release(&data->ctx, err);
return err;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_numaker_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_numaker_data *data = dev->data;
int err;
adc_context_lock(&data->ctx, true, async);
err = m_adc_numaker_start_read(dev, sequence);
adc_context_release(&data->ctx, err);
return err;
}
#endif
static const struct adc_driver_api adc_numaker_driver_api = {
.channel_setup = adc_numaker_channel_setup,
.read = adc_numaker_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_numaker_read_async,
#endif
};
static int adc_numaker_init(const struct device *dev)
{
const struct adc_numaker_config *cfg = dev->config;
struct adc_numaker_data *data = dev->data;
int err;
struct numaker_scc_subsys scc_subsys;
/* Validate this module's reset object */
if (!device_is_ready(cfg->reset.dev)) {
LOG_ERR("reset controller not ready");
return -ENODEV;
}
data->dev = dev;
SYS_UnlockReg();
/* CLK controller */
memset(&scc_subsys, 0x00, sizeof(scc_subsys));
scc_subsys.subsys_id = NUMAKER_SCC_SUBSYS_ID_PCC;
scc_subsys.pcc.clk_modidx = cfg->clk_modidx;
scc_subsys.pcc.clk_src = cfg->clk_src;
scc_subsys.pcc.clk_div = cfg->clk_div;
/* Equivalent to CLK_EnableModuleClock() */
err = clock_control_on(cfg->clk_dev, (clock_control_subsys_t)&scc_subsys);
if (err != 0) {
goto done;
}
/* Equivalent to CLK_SetModuleClock() */
err = clock_control_configure(cfg->clk_dev, (clock_control_subsys_t)&scc_subsys, NULL);
if (err != 0) {
goto done;
}
err = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
LOG_ERR("Failed to apply pinctrl state");
goto done;
}
/* Reset EADC to default state, same as BSP's SYS_ResetModule(id_rst) */
reset_line_toggle_dt(&cfg->reset);
/* Enable NVIC */
cfg->irq_config_func(dev);
/* Init mutex of adc_context */
adc_context_unlock_unconditionally(&data->ctx);
done:
SYS_LockReg();
return err;
}
#define ADC_NUMAKER_IRQ_CONFIG_FUNC(n) \
static void adc_numaker_irq_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
adc_numaker_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
#define ADC_NUMAKER_INIT(inst) \
PINCTRL_DT_INST_DEFINE(inst); \
ADC_NUMAKER_IRQ_CONFIG_FUNC(inst) \
\
static const struct adc_numaker_config adc_numaker_cfg_##inst = { \
.eadc_base = (EADC_T *)DT_INST_REG_ADDR(inst), \
.channel_cnt = DT_INST_PROP(inst, channels), \
.reset = RESET_DT_SPEC_INST_GET(inst), \
.clk_modidx = DT_INST_CLOCKS_CELL(inst, clock_module_index), \
.clk_src = DT_INST_CLOCKS_CELL(inst, clock_source), \
.clk_div = DT_INST_CLOCKS_CELL(inst, clock_divider), \
.clk_dev = DEVICE_DT_GET(DT_PARENT(DT_INST_CLOCKS_CTLR(inst))), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
.irq_config_func = adc_numaker_irq_config_func_##inst, \
}; \
\
static struct adc_numaker_data adc_numaker_data_##inst = { \
ADC_CONTEXT_INIT_TIMER(adc_numaker_data_##inst, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_numaker_data_##inst, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_numaker_data_##inst, ctx), \
}; \
DEVICE_DT_INST_DEFINE(inst, \
&adc_numaker_init, NULL, \
&adc_numaker_data_##inst, &adc_numaker_cfg_##inst, \
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&adc_numaker_driver_api);
DT_INST_FOREACH_STATUS_OKAY(ADC_NUMAKER_INIT)