zephyr/drivers/adc/adc_mcux_adc12.c
Carles Cufi 4b37a8f3a4 Revert "global: Replace BUILD_ASSERT_MSG() with BUILD_ASSERT()"
This reverts commit 8739517107.

Pull Request #23437 was merged by mistake with an invalid manifest.

Signed-off-by: Carles Cufi <carles.cufi@nordicsemi.no>
2020-03-19 18:45:13 +01:00

386 lines
11 KiB
C

/*
* Copyright (c) 2019 Vestas Wind Systems A/S
*
* Based on adc_mcux_adc16.c, which is:
* Copyright (c) 2017-2018, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/adc.h>
#include <fsl_adc12.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_mcux_adc12);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
struct mcux_adc12_config {
ADC_Type *base;
adc12_clock_source_t clock_src;
adc12_clock_divider_t clock_div;
adc12_reference_voltage_source_t ref_src;
uint32_t sample_clk_count;
void (*irq_config_func)(struct device *dev);
};
struct mcux_adc12_data {
struct device *dev;
struct adc_context ctx;
u16_t *buffer;
u16_t *repeat_buffer;
u32_t channels;
u8_t channel_id;
};
static int mcux_adc12_channel_setup(struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
u8_t channel_id = channel_cfg->channel_id;
if (channel_id > (ADC_SC1_ADCH_MASK >> ADC_SC1_ADCH_SHIFT)) {
LOG_ERR("Invalid channel %d", channel_id);
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Unsupported channel acquisition time");
return -ENOTSUP;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -ENOTSUP;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Unsupported channel gain %d", channel_cfg->gain);
return -ENOTSUP;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Unsupported channel reference");
return -ENOTSUP;
}
return 0;
}
static int mcux_adc12_start_read(struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcux_adc12_config *config = dev->config->config_info;
struct mcux_adc12_data *data = dev->driver_data;
adc12_hardware_average_mode_t mode;
adc12_resolution_t resolution;
ADC_Type *base = config->base;
int error;
u32_t tmp32;
switch (sequence->resolution) {
case 8:
resolution = kADC12_Resolution8Bit;
break;
case 10:
resolution = kADC12_Resolution10Bit;
break;
case 12:
resolution = kADC12_Resolution12Bit;
break;
default:
LOG_ERR("Unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
tmp32 = base->CFG1 & ~(ADC_CFG1_MODE_MASK);
tmp32 |= ADC_CFG1_MODE(resolution);
base->CFG1 = tmp32;
switch (sequence->oversampling) {
case 0:
mode = kADC12_HardwareAverageDisabled;
break;
case 2:
mode = kADC12_HardwareAverageCount4;
break;
case 3:
mode = kADC12_HardwareAverageCount8;
break;
case 4:
mode = kADC12_HardwareAverageCount16;
break;
case 5:
mode = kADC12_HardwareAverageCount32;
break;
default:
LOG_ERR("Unsupported oversampling value %d",
sequence->oversampling);
return -ENOTSUP;
}
ADC12_SetHardwareAverage(config->base, mode);
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
return error;
}
static int mcux_adc12_read_async(struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_adc12_data *data = dev->driver_data;
int error;
adc_context_lock(&data->ctx, async ? true : false, async);
error = mcux_adc12_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static int mcux_adc12_read(struct device *dev,
const struct adc_sequence *sequence)
{
return mcux_adc12_read_async(dev, sequence, NULL);
}
static void mcux_adc12_start_channel(struct device *dev)
{
const struct mcux_adc12_config *config = dev->config->config_info;
struct mcux_adc12_data *data = dev->driver_data;
adc12_channel_config_t channel_config;
u32_t channel_group = 0U;
data->channel_id = find_lsb_set(data->channels) - 1;
LOG_DBG("Starting channel %d", data->channel_id);
channel_config.enableInterruptOnConversionCompleted = true;
channel_config.channelNumber = data->channel_id;
ADC12_SetChannelConfig(config->base, channel_group, &channel_config);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_adc12_data *data =
CONTAINER_OF(ctx, struct mcux_adc12_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
mcux_adc12_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_adc12_data *data =
CONTAINER_OF(ctx, struct mcux_adc12_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void mcux_adc12_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct mcux_adc12_config *config = dev->config->config_info;
struct mcux_adc12_data *data = dev->driver_data;
ADC_Type *base = config->base;
u32_t channel_group = 0U;
u16_t result;
result = ADC12_GetChannelConversionValue(base, channel_group);
LOG_DBG("Finished channel %d. Result is 0x%04x",
data->channel_id, result);
*data->buffer++ = result;
data->channels &= ~BIT(data->channel_id);
if (data->channels) {
mcux_adc12_start_channel(dev);
} else {
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static int mcux_adc12_init(struct device *dev)
{
const struct mcux_adc12_config *config = dev->config->config_info;
struct mcux_adc12_data *data = dev->driver_data;
ADC_Type *base = config->base;
adc12_config_t adc_config;
ADC12_GetDefaultConfig(&adc_config);
adc_config.referenceVoltageSource = config->ref_src;
adc_config.clockSource = config->clock_src;
adc_config.clockDivider = config->clock_div;
adc_config.sampleClockCount = config->sample_clk_count;
adc_config.resolution = kADC12_Resolution12Bit;
adc_config.enableContinuousConversion = false;
ADC12_Init(base, &adc_config);
ADC12_DoAutoCalibration(base);
ADC12_EnableHardwareTrigger(base, false);
config->irq_config_func(dev);
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api mcux_adc12_driver_api = {
.channel_setup = mcux_adc12_channel_setup,
.read = mcux_adc12_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_adc12_read_async,
#endif
};
#define ASSERT_WITHIN_RANGE(val, min, max, str) \
BUILD_ASSERT_MSG(val >= min && val <= max, str)
#define ASSERT_ADC12_CLK_DIV_VALID(val, str) \
BUILD_ASSERT_MSG(val == 1 || val == 2 || val == 4 || val == 8, str)
#define TO_ADC12_CLOCK_SRC(val) _DO_CONCAT(kADC12_ClockSourceAlt, val)
#define TO_ADC12_CLOCK_DIV(val) _DO_CONCAT(kADC12_ClockDivider, val)
#if DT_INST_0_NXP_KINETIS_ADC12
static void mcux_adc12_config_func_0(struct device *dev);
ASSERT_WITHIN_RANGE(DT_INST_0_NXP_KINETIS_ADC12_CLK_SOURCE, 0, 3,
"Invalid clock source");
ASSERT_ADC12_CLK_DIV_VALID(DT_INST_0_NXP_KINETIS_ADC12_CLK_DIVIDER,
"Invalid clock divider");
ASSERT_WITHIN_RANGE(DT_INST_0_NXP_KINETIS_ADC12_SAMPLE_TIME, 2, 256,
"Invalid sample time");
static const struct mcux_adc12_config mcux_adc12_config_0 = {
.base = (ADC_Type *)DT_INST_0_NXP_KINETIS_ADC12_BASE_ADDRESS,
.clock_src = TO_ADC12_CLOCK_SRC(DT_INST_0_NXP_KINETIS_ADC12_CLK_SOURCE),
.clock_div =
TO_ADC12_CLOCK_DIV(DT_INST_0_NXP_KINETIS_ADC12_CLK_DIVIDER),
#if DT_INST_0_NXP_KINETIS_ADC12_ALTERNATE_VOLTAGE_REFERENCE == 1
.ref_src = kADC12_ReferenceVoltageSourceValt,
#else
.ref_src = kADC12_ReferenceVoltageSourceVref,
#endif
.sample_clk_count = DT_INST_0_NXP_KINETIS_ADC12_SAMPLE_TIME,
.irq_config_func = mcux_adc12_config_func_0,
};
static struct mcux_adc12_data mcux_adc12_data_0 = {
ADC_CONTEXT_INIT_TIMER(mcux_adc12_data_0, ctx),
ADC_CONTEXT_INIT_LOCK(mcux_adc12_data_0, ctx),
ADC_CONTEXT_INIT_SYNC(mcux_adc12_data_0, ctx),
};
DEVICE_AND_API_INIT(mcux_adc12_0, DT_INST_0_NXP_KINETIS_ADC12_LABEL,
&mcux_adc12_init, &mcux_adc12_data_0, &mcux_adc12_config_0,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&mcux_adc12_driver_api);
static void mcux_adc12_config_func_0(struct device *dev)
{
IRQ_CONNECT(DT_INST_0_NXP_KINETIS_ADC12_IRQ_0,
DT_INST_0_NXP_KINETIS_ADC12_IRQ_0_PRIORITY, mcux_adc12_isr,
DEVICE_GET(mcux_adc12_0), 0);
irq_enable(DT_INST_0_NXP_KINETIS_ADC12_IRQ_0);
}
#endif /* DT_INST_0_NXP_KINETIS_ADC12 */
#if DT_INST_1_NXP_KINETIS_ADC12
static void mcux_adc12_config_func_1(struct device *dev);
ASSERT_WITHIN_RANGE(DT_INST_1_NXP_KINETIS_ADC12_CLK_SOURCE, 0, 3,
"Invalid clock source");
ASSERT_ADC12_CLK_DIV_VALID(DT_INST_1_NXP_KINETIS_ADC12_CLK_DIVIDER,
"Invalid clock divider");
ASSERT_WITHIN_RANGE(DT_INST_1_NXP_KINETIS_ADC12_SAMPLE_TIME, 2, 256,
"Invalid sample time");
static const struct mcux_adc12_config mcux_adc12_config_1 = {
.base = (ADC_Type *)DT_INST_1_NXP_KINETIS_ADC12_BASE_ADDRESS,
.clock_src = TO_ADC12_CLOCK_SRC(DT_INST_1_NXP_KINETIS_ADC12_CLK_SOURCE),
.clock_div =
TO_ADC12_CLOCK_DIV(DT_INST_1_NXP_KINETIS_ADC12_CLK_DIVIDER),
#if DT_INST_1_NXP_KINETIS_ADC12_ALTERNATE_VOLTAGE_REFERENCE == 1
.ref_src = kADC12_ReferenceVoltageSourceValt,
#else
.ref_src = kADC12_ReferenceVoltageSourceVref,
#endif
.sample_clk_count = DT_INST_1_NXP_KINETIS_ADC12_SAMPLE_TIME,
.irq_config_func = mcux_adc12_config_func_1,
};
static struct mcux_adc12_data mcux_adc12_data_1 = {
ADC_CONTEXT_INIT_TIMER(mcux_adc12_data_1, ctx),
ADC_CONTEXT_INIT_LOCK(mcux_adc12_data_1, ctx),
ADC_CONTEXT_INIT_SYNC(mcux_adc12_data_1, ctx),
};
DEVICE_AND_API_INIT(mcux_adc12_1, DT_INST_1_NXP_KINETIS_ADC12_LABEL,
&mcux_adc12_init, &mcux_adc12_data_1, &mcux_adc12_config_1,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&mcux_adc12_driver_api);
static void mcux_adc12_config_func_1(struct device *dev)
{
IRQ_CONNECT(DT_INST_1_NXP_KINETIS_ADC12_IRQ_0,
DT_INST_1_NXP_KINETIS_ADC12_IRQ_0_PRIORITY, mcux_adc12_isr,
DEVICE_GET(mcux_adc12_1), 0);
irq_enable(DT_INST_1_NXP_KINETIS_ADC12_IRQ_0);
}
#endif /* DT_INST_1_NXP_KINETIS_ADC12 */
#if DT_INST_2_NXP_KINETIS_ADC12
static void mcux_adc12_config_func_2(struct device *dev);
ASSERT_WITHIN_RANGE(DT_INST_2_NXP_KINETIS_ADC12_CLK_SOURCE, 0, 3,
"Invalid clock source");
ASSERT_ADC12_CLK_DIV_VALID(DT_INST_2_NXP_KINETIS_ADC12_CLK_DIVIDER,
"Invalid clock divider");
ASSERT_WITHIN_RANGE(DT_INST_2_NXP_KINETIS_ADC12_SAMPLE_TIME, 2, 256,
"Invalid sample time");
static const struct mcux_adc12_config mcux_adc12_config_2 = {
.base = (ADC_Type *)DT_INST_2_NXP_KINETIS_ADC12_BASE_ADDRESS,
.clock_src = TO_ADC12_CLOCK_SRC(DT_INST_2_NXP_KINETIS_ADC12_CLK_SOURCE),
.clock_div =
TO_ADC12_CLOCK_DIV(DT_INST_2_NXP_KINETIS_ADC12_CLK_DIVIDER),
#if DT_INST_2_NXP_KINETIS_ADC12_ALTERNATE_VOLTAGE_REFERENCE == 1
.ref_src = kADC12_ReferenceVoltageSourceValt,
#else
.ref_src = kADC12_ReferenceVoltageSourceVref,
#endif
.sample_clk_count = DT_INST_2_NXP_KINETIS_ADC12_SAMPLE_TIME,
.irq_config_func = mcux_adc12_config_func_2,
};
static struct mcux_adc12_data mcux_adc12_data_2 = {
ADC_CONTEXT_INIT_TIMER(mcux_adc12_data_2, ctx),
ADC_CONTEXT_INIT_LOCK(mcux_adc12_data_2, ctx),
ADC_CONTEXT_INIT_SYNC(mcux_adc12_data_2, ctx),
};
DEVICE_AND_API_INIT(mcux_adc12_2, DT_INST_2_NXP_KINETIS_ADC12_LABEL,
&mcux_adc12_init, &mcux_adc12_data_2, &mcux_adc12_config_2,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&mcux_adc12_driver_api);
static void mcux_adc12_config_func_2(struct device *dev)
{
IRQ_CONNECT(DT_INST_2_NXP_KINETIS_ADC12_IRQ_0,
DT_INST_2_NXP_KINETIS_ADC12_IRQ_0_PRIORITY, mcux_adc12_isr,
DEVICE_GET(mcux_adc12_2), 0);
irq_enable(DT_INST_2_NXP_KINETIS_ADC12_IRQ_0);
}
#endif /* DT_INST_2_NXP_KINETIS_ADC12 */