4e7565dceb
The VLAN packets are prepared in Ethernet L2 so no need to have special handling in the driver. Signed-off-by: Jukka Rissanen <jukka.rissanen@nordicsemi.no>
1746 lines
48 KiB
C
1746 lines
48 KiB
C
/* MCUX Ethernet Driver
|
|
*
|
|
* Copyright (c) 2016-2017 ARM Ltd
|
|
* Copyright (c) 2016 Linaro Ltd
|
|
* Copyright (c) 2018 Intel Corporation
|
|
* Copyright 2023 NXP
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT nxp_kinetis_ethernet
|
|
|
|
/* Driver Limitations:
|
|
*
|
|
* There is no statistics collection for either normal operation or
|
|
* error behaviour.
|
|
*/
|
|
|
|
#define LOG_MODULE_NAME eth_mcux
|
|
#define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL
|
|
#define RING_ID 0
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
|
|
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/sys/__assert.h>
|
|
#include <zephyr/net/net_pkt.h>
|
|
#include <zephyr/net/net_if.h>
|
|
#include <zephyr/net/ethernet.h>
|
|
#include <ethernet/eth_stats.h>
|
|
#include <zephyr/pm/device.h>
|
|
#include <zephyr/irq.h>
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
#include <zephyr/drivers/ptp_clock.h>
|
|
#endif
|
|
|
|
#if defined(CONFIG_NET_DSA)
|
|
#include <zephyr/net/dsa.h>
|
|
#endif
|
|
|
|
#include "fsl_enet.h"
|
|
#include "fsl_phy.h"
|
|
#include "fsl_phyksz8081.h"
|
|
#include "fsl_enet_mdio.h"
|
|
#if defined(CONFIG_NET_POWER_MANAGEMENT)
|
|
#include "fsl_clock.h"
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#endif
|
|
#include <zephyr/devicetree.h>
|
|
#include <zephyr/drivers/gpio.h>
|
|
#if defined(CONFIG_PINCTRL)
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#endif
|
|
|
|
#include "eth.h"
|
|
|
|
#define PHY_OMS_OVERRIDE_REG 0x16U /* The PHY Operation Mode Strap Override register. */
|
|
#define PHY_OMS_STATUS_REG 0x17U /* The PHY Operation Mode Strap Status register. */
|
|
|
|
#define PHY_OMS_NANDTREE_MASK 0x0020U /* The PHY NAND Tree Strap-In Override/Status mask. */
|
|
#define PHY_OMS_FACTORY_MODE_MASK 0x8000U /* The factory mode Override/Status mask. */
|
|
|
|
/* Defines the PHY KSZ8081 vendor defined registers. */
|
|
#define PHY_CONTROL1_REG 0x1EU /* The PHY control one register. */
|
|
#define PHY_CONTROL2_REG 0x1FU /* The PHY control two register. */
|
|
|
|
/* Defines the PHY KSZ8081 ID number. */
|
|
#define PHY_CONTROL_ID1 0x22U /* The PHY ID1 */
|
|
|
|
/* Defines the mask flag of operation mode in control registers */
|
|
#define PHY_CTL2_REMOTELOOP_MASK 0x0004U /* The PHY remote loopback mask. */
|
|
#define PHY_CTL2_REFCLK_SELECT_MASK 0x0080U /* The PHY RMII reference clock select. */
|
|
#define PHY_CTL1_10HALFDUPLEX_MASK 0x0001U /* The PHY 10M half duplex mask. */
|
|
#define PHY_CTL1_100HALFDUPLEX_MASK 0x0002U /* The PHY 100M half duplex mask. */
|
|
#define PHY_CTL1_10FULLDUPLEX_MASK 0x0005U /* The PHY 10M full duplex mask. */
|
|
#define PHY_CTL1_100FULLDUPLEX_MASK 0x0006U /* The PHY 100M full duplex mask. */
|
|
#define PHY_CTL1_SPEEDUPLX_MASK 0x0007U /* The PHY speed and duplex mask. */
|
|
#define PHY_CTL1_ENERGYDETECT_MASK 0x10U /* The PHY signal present on rx differential pair. */
|
|
#define PHY_CTL1_LINKUP_MASK 0x100U /* The PHY link up. */
|
|
#define PHY_LINK_READY_MASK (PHY_CTL1_ENERGYDETECT_MASK | PHY_CTL1_LINKUP_MASK)
|
|
|
|
/* Defines the timeout macro. */
|
|
#define PHY_READID_TIMEOUT_COUNT 1000U
|
|
|
|
/* Define RX and TX thread stack sizes */
|
|
#define ETH_MCUX_RX_THREAD_STACK_SIZE 1600
|
|
#define ETH_MCUX_TX_THREAD_STACK_SIZE 1600
|
|
|
|
#define FREESCALE_OUI_B0 0x00
|
|
#define FREESCALE_OUI_B1 0x04
|
|
#define FREESCALE_OUI_B2 0x9f
|
|
|
|
#define ETH_MCUX_FIXED_LINK_NODE \
|
|
DT_CHILD(DT_NODELABEL(enet), fixed_link)
|
|
#define ETH_MCUX_FIXED_LINK \
|
|
DT_NODE_EXISTS(ETH_MCUX_FIXED_LINK_NODE)
|
|
#define ETH_MCUX_FIXED_LINK_SPEED \
|
|
DT_PROP(ETH_MCUX_FIXED_LINK_NODE, speed)
|
|
#define ETH_MCUX_FIXED_LINK_FULL_DUPLEX \
|
|
DT_PROP(ETH_MCUX_FIXED_LINK_NODE, full_duplex)
|
|
|
|
enum eth_mcux_phy_state {
|
|
eth_mcux_phy_state_initial,
|
|
eth_mcux_phy_state_reset,
|
|
eth_mcux_phy_state_autoneg,
|
|
eth_mcux_phy_state_restart,
|
|
eth_mcux_phy_state_read_status,
|
|
eth_mcux_phy_state_read_duplex,
|
|
eth_mcux_phy_state_wait,
|
|
eth_mcux_phy_state_closing
|
|
};
|
|
|
|
struct _phy_resource {
|
|
mdioWrite write;
|
|
mdioRead read;
|
|
};
|
|
|
|
#if defined(CONFIG_NET_POWER_MANAGEMENT)
|
|
extern uint32_t ENET_GetInstance(ENET_Type * base);
|
|
static const clock_ip_name_t enet_clocks[] = ENET_CLOCKS;
|
|
#endif
|
|
|
|
static void eth_mcux_init(const struct device *dev);
|
|
|
|
#if defined(CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG)
|
|
static const char *phy_state_name(enum eth_mcux_phy_state state)
|
|
{
|
|
static const char * const name[] = {
|
|
"initial",
|
|
"reset",
|
|
"autoneg",
|
|
"restart",
|
|
"read-status",
|
|
"read-duplex",
|
|
"wait",
|
|
"closing"
|
|
};
|
|
|
|
return name[state];
|
|
}
|
|
#endif
|
|
|
|
static const char *eth_name(ENET_Type *base)
|
|
{
|
|
switch ((int)base) {
|
|
case DT_INST_REG_ADDR(0):
|
|
return "ETH_0";
|
|
#if DT_NODE_HAS_STATUS(DT_DRV_INST(1), okay)
|
|
case DT_INST_REG_ADDR(1):
|
|
return "ETH_1";
|
|
#endif
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
struct eth_context {
|
|
ENET_Type *base;
|
|
void (*config_func)(void);
|
|
struct net_if *iface;
|
|
#if defined(CONFIG_NET_POWER_MANAGEMENT)
|
|
clock_ip_name_t clock;
|
|
const struct device *clock_dev;
|
|
#endif
|
|
enet_handle_t enet_handle;
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
const struct device *ptp_clock;
|
|
enet_ptp_config_t ptp_config;
|
|
double clk_ratio;
|
|
struct k_mutex ptp_mutex;
|
|
struct k_sem ptp_ts_sem;
|
|
#endif
|
|
struct k_sem tx_buf_sem;
|
|
phy_handle_t *phy_handle;
|
|
struct _phy_resource *phy_config;
|
|
struct k_sem rx_thread_sem;
|
|
enum eth_mcux_phy_state phy_state;
|
|
bool enabled;
|
|
bool link_up;
|
|
uint32_t phy_addr;
|
|
uint32_t rx_irq_num;
|
|
uint32_t tx_irq_num;
|
|
phy_duplex_t phy_duplex;
|
|
phy_speed_t phy_speed;
|
|
uint8_t mac_addr[6];
|
|
void (*generate_mac)(uint8_t *);
|
|
struct k_work phy_work;
|
|
struct k_work_delayable delayed_phy_work;
|
|
|
|
K_KERNEL_STACK_MEMBER(rx_thread_stack, ETH_MCUX_RX_THREAD_STACK_SIZE);
|
|
struct k_thread rx_thread;
|
|
|
|
/* TODO: FIXME. This Ethernet frame sized buffer is used for
|
|
* interfacing with MCUX. How it works is that hardware uses
|
|
* DMA scatter buffers to receive a frame, and then public
|
|
* MCUX call gathers them into this buffer (there's no other
|
|
* public interface). All this happens only for this driver
|
|
* to scatter this buffer again into Zephyr fragment buffers.
|
|
* This is not efficient, but proper resolution of this issue
|
|
* depends on introduction of zero-copy networking support
|
|
* in Zephyr, and adding needed interface to MCUX (or
|
|
* bypassing it and writing a more complex driver working
|
|
* directly with hardware).
|
|
*
|
|
* Note that we do not copy FCS into this buffer thus the
|
|
* size is 1514 bytes.
|
|
*/
|
|
struct k_mutex tx_frame_buf_mutex;
|
|
struct k_mutex rx_frame_buf_mutex;
|
|
uint8_t *tx_frame_buf; /* Max MTU + ethernet header */
|
|
uint8_t *rx_frame_buf; /* Max MTU + ethernet header */
|
|
#if defined(CONFIG_PINCTRL)
|
|
const struct pinctrl_dev_config *pincfg;
|
|
#endif
|
|
#if defined(CONFIG_ETH_MCUX_PHY_RESET)
|
|
const struct gpio_dt_spec int_gpio;
|
|
const struct gpio_dt_spec reset_gpio;
|
|
#endif
|
|
};
|
|
|
|
/* Use ENET_FRAME_MAX_VLANFRAMELEN for VLAN frame size
|
|
* Use ENET_FRAME_MAX_FRAMELEN for Ethernet frame size
|
|
*/
|
|
#if defined(CONFIG_NET_VLAN)
|
|
#if !defined(ENET_FRAME_MAX_VLANFRAMELEN)
|
|
#define ENET_FRAME_MAX_VLANFRAMELEN (ENET_FRAME_MAX_FRAMELEN + 4)
|
|
#endif
|
|
#define ETH_MCUX_BUFFER_SIZE \
|
|
ROUND_UP(ENET_FRAME_MAX_VLANFRAMELEN, ENET_BUFF_ALIGNMENT)
|
|
#else
|
|
#define ETH_MCUX_BUFFER_SIZE \
|
|
ROUND_UP(ENET_FRAME_MAX_FRAMELEN, ENET_BUFF_ALIGNMENT)
|
|
#endif /* CONFIG_NET_VLAN */
|
|
|
|
#ifdef CONFIG_SOC_FAMILY_KINETIS
|
|
#if defined(CONFIG_NET_POWER_MANAGEMENT)
|
|
static void eth_mcux_phy_enter_reset(struct eth_context *context);
|
|
void eth_mcux_phy_stop(struct eth_context *context);
|
|
|
|
static int eth_mcux_device_pm_action(const struct device *dev,
|
|
enum pm_device_action action)
|
|
{
|
|
struct eth_context *eth_ctx = dev->data;
|
|
int ret = 0;
|
|
|
|
if (!device_is_ready(eth_ctx->clock_dev)) {
|
|
LOG_ERR("No CLOCK dev");
|
|
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
switch (action) {
|
|
case PM_DEVICE_ACTION_SUSPEND:
|
|
LOG_DBG("Suspending");
|
|
|
|
ret = net_if_suspend(eth_ctx->iface);
|
|
if (ret == -EBUSY) {
|
|
goto out;
|
|
}
|
|
|
|
eth_mcux_phy_enter_reset(eth_ctx);
|
|
eth_mcux_phy_stop(eth_ctx);
|
|
|
|
ENET_Reset(eth_ctx->base);
|
|
ENET_Deinit(eth_ctx->base);
|
|
clock_control_off(eth_ctx->clock_dev,
|
|
(clock_control_subsys_t)eth_ctx->clock);
|
|
break;
|
|
case PM_DEVICE_ACTION_RESUME:
|
|
LOG_DBG("Resuming");
|
|
|
|
clock_control_on(eth_ctx->clock_dev,
|
|
(clock_control_subsys_t)eth_ctx->clock);
|
|
eth_mcux_init(dev);
|
|
net_if_resume(eth_ctx->iface);
|
|
break;
|
|
default:
|
|
ret = -ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_NET_POWER_MANAGEMENT */
|
|
#endif /* CONFIG_SOC_FAMILY_KINETIS */
|
|
|
|
#if ETH_MCUX_FIXED_LINK
|
|
static void eth_mcux_get_phy_params(phy_duplex_t *p_phy_duplex,
|
|
phy_speed_t *p_phy_speed)
|
|
{
|
|
*p_phy_duplex = kPHY_HalfDuplex;
|
|
#if ETH_MCUX_FIXED_LINK_FULL_DUPLEX
|
|
*p_phy_duplex = kPHY_FullDuplex;
|
|
#endif
|
|
|
|
*p_phy_speed = kPHY_Speed10M;
|
|
#if ETH_MCUX_FIXED_LINK_SPEED == 100
|
|
*p_phy_speed = kPHY_Speed100M;
|
|
#endif
|
|
}
|
|
#else
|
|
|
|
static void eth_mcux_decode_duplex_and_speed(uint32_t status,
|
|
phy_duplex_t *p_phy_duplex,
|
|
phy_speed_t *p_phy_speed)
|
|
{
|
|
switch (status & PHY_CTL1_SPEEDUPLX_MASK) {
|
|
case PHY_CTL1_10FULLDUPLEX_MASK:
|
|
*p_phy_duplex = kPHY_FullDuplex;
|
|
*p_phy_speed = kPHY_Speed10M;
|
|
break;
|
|
case PHY_CTL1_100FULLDUPLEX_MASK:
|
|
*p_phy_duplex = kPHY_FullDuplex;
|
|
*p_phy_speed = kPHY_Speed100M;
|
|
break;
|
|
case PHY_CTL1_100HALFDUPLEX_MASK:
|
|
*p_phy_duplex = kPHY_HalfDuplex;
|
|
*p_phy_speed = kPHY_Speed100M;
|
|
break;
|
|
case PHY_CTL1_10HALFDUPLEX_MASK:
|
|
*p_phy_duplex = kPHY_HalfDuplex;
|
|
*p_phy_speed = kPHY_Speed10M;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* ETH_MCUX_FIXED_LINK */
|
|
|
|
static inline struct net_if *get_iface(struct eth_context *ctx)
|
|
{
|
|
return ctx->iface;
|
|
}
|
|
|
|
static void eth_mcux_phy_enter_reset(struct eth_context *context)
|
|
{
|
|
/* Reset the PHY. */
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
ENET_StartSMIWrite(context->base, context->phy_addr,
|
|
PHY_BASICCONTROL_REG,
|
|
kENET_MiiWriteValidFrame,
|
|
PHY_BCTL_RESET_MASK);
|
|
#endif
|
|
context->phy_state = eth_mcux_phy_state_reset;
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
k_work_submit(&context->phy_work);
|
|
#endif
|
|
}
|
|
|
|
static void eth_mcux_phy_start(struct eth_context *context)
|
|
{
|
|
#if defined(CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG)
|
|
LOG_DBG("%s phy_state=%s", eth_name(context->base),
|
|
phy_state_name(context->phy_state));
|
|
#endif
|
|
|
|
context->enabled = true;
|
|
|
|
switch (context->phy_state) {
|
|
case eth_mcux_phy_state_initial:
|
|
context->phy_handle->phyAddr = context->phy_addr;
|
|
ENET_ActiveRead(context->base);
|
|
/* Reset the PHY. */
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
ENET_StartSMIWrite(context->base, context->phy_addr,
|
|
PHY_BASICCONTROL_REG,
|
|
kENET_MiiWriteValidFrame,
|
|
PHY_BCTL_RESET_MASK);
|
|
#else
|
|
/*
|
|
* With no SMI communication one needs to wait for
|
|
* iface being up by the network core.
|
|
*/
|
|
k_work_submit(&context->phy_work);
|
|
break;
|
|
#endif
|
|
#if defined(CONFIG_SOC_SERIES_IMXRT10XX) || defined(CONFIG_SOC_SERIES_IMXRT11XX)
|
|
context->phy_state = eth_mcux_phy_state_initial;
|
|
#else
|
|
context->phy_state = eth_mcux_phy_state_reset;
|
|
#endif
|
|
break;
|
|
case eth_mcux_phy_state_reset:
|
|
eth_mcux_phy_enter_reset(context);
|
|
break;
|
|
case eth_mcux_phy_state_autoneg:
|
|
case eth_mcux_phy_state_restart:
|
|
case eth_mcux_phy_state_read_status:
|
|
case eth_mcux_phy_state_read_duplex:
|
|
case eth_mcux_phy_state_wait:
|
|
case eth_mcux_phy_state_closing:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void eth_mcux_phy_stop(struct eth_context *context)
|
|
{
|
|
#if defined(CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG)
|
|
LOG_DBG("%s phy_state=%s", eth_name(context->base),
|
|
phy_state_name(context->phy_state));
|
|
#endif
|
|
|
|
context->enabled = false;
|
|
|
|
switch (context->phy_state) {
|
|
case eth_mcux_phy_state_initial:
|
|
case eth_mcux_phy_state_reset:
|
|
case eth_mcux_phy_state_autoneg:
|
|
case eth_mcux_phy_state_restart:
|
|
case eth_mcux_phy_state_read_status:
|
|
case eth_mcux_phy_state_read_duplex:
|
|
/* Do nothing, let the current communication complete
|
|
* then deal with shutdown.
|
|
*/
|
|
context->phy_state = eth_mcux_phy_state_closing;
|
|
break;
|
|
case eth_mcux_phy_state_wait:
|
|
k_work_cancel_delayable(&context->delayed_phy_work);
|
|
/* @todo, actually power down the PHY ? */
|
|
context->phy_state = eth_mcux_phy_state_initial;
|
|
break;
|
|
case eth_mcux_phy_state_closing:
|
|
/* We are already going down. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void eth_mcux_phy_event(struct eth_context *context)
|
|
{
|
|
#if !(defined(CONFIG_ETH_MCUX_NO_PHY_SMI) && ETH_MCUX_FIXED_LINK)
|
|
uint32_t status;
|
|
#endif
|
|
bool link_up;
|
|
#if defined(CONFIG_SOC_SERIES_IMXRT10XX) || defined(CONFIG_SOC_SERIES_IMXRT11XX)
|
|
status_t res;
|
|
uint16_t ctrl2;
|
|
#endif
|
|
phy_duplex_t phy_duplex = kPHY_FullDuplex;
|
|
phy_speed_t phy_speed = kPHY_Speed100M;
|
|
|
|
#if defined(CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG)
|
|
LOG_DBG("%s phy_state=%s", eth_name(context->base),
|
|
phy_state_name(context->phy_state));
|
|
#endif
|
|
switch (context->phy_state) {
|
|
case eth_mcux_phy_state_initial:
|
|
#if defined(CONFIG_SOC_SERIES_IMXRT10XX) || defined(CONFIG_SOC_SERIES_IMXRT11XX)
|
|
ENET_DisableInterrupts(context->base, ENET_EIR_MII_MASK);
|
|
res = PHY_Read(context->phy_handle, PHY_CONTROL2_REG, &ctrl2);
|
|
ENET_EnableInterrupts(context->base, ENET_EIR_MII_MASK);
|
|
if (res != kStatus_Success) {
|
|
LOG_WRN("Reading PHY reg failed (status 0x%x)", res);
|
|
k_work_submit(&context->phy_work);
|
|
} else {
|
|
ctrl2 |= PHY_CTL2_REFCLK_SELECT_MASK;
|
|
ENET_StartSMIWrite(context->base, context->phy_addr,
|
|
PHY_CONTROL2_REG,
|
|
kENET_MiiWriteValidFrame,
|
|
ctrl2);
|
|
}
|
|
context->phy_state = eth_mcux_phy_state_reset;
|
|
#endif
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
/*
|
|
* When the iface is available proceed with the eth link setup,
|
|
* otherwise reschedule the eth_mcux_phy_event and check after
|
|
* 1ms
|
|
*/
|
|
if (context->iface) {
|
|
context->phy_state = eth_mcux_phy_state_reset;
|
|
}
|
|
|
|
k_work_reschedule(&context->delayed_phy_work, K_MSEC(1));
|
|
#endif
|
|
break;
|
|
case eth_mcux_phy_state_closing:
|
|
if (context->enabled) {
|
|
eth_mcux_phy_enter_reset(context);
|
|
} else {
|
|
/* @todo, actually power down the PHY ? */
|
|
context->phy_state = eth_mcux_phy_state_initial;
|
|
}
|
|
break;
|
|
case eth_mcux_phy_state_reset:
|
|
/* Setup PHY autonegotiation. */
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
ENET_StartSMIWrite(context->base, context->phy_addr,
|
|
PHY_AUTONEG_ADVERTISE_REG,
|
|
kENET_MiiWriteValidFrame,
|
|
(PHY_100BASETX_FULLDUPLEX_MASK |
|
|
PHY_100BASETX_HALFDUPLEX_MASK |
|
|
PHY_10BASETX_FULLDUPLEX_MASK |
|
|
PHY_10BASETX_HALFDUPLEX_MASK |
|
|
PHY_IEEE802_3_SELECTOR_MASK));
|
|
#endif
|
|
context->phy_state = eth_mcux_phy_state_autoneg;
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
k_work_submit(&context->phy_work);
|
|
#endif
|
|
break;
|
|
case eth_mcux_phy_state_autoneg:
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
/* Setup PHY autonegotiation. */
|
|
ENET_StartSMIWrite(context->base, context->phy_addr,
|
|
PHY_BASICCONTROL_REG,
|
|
kENET_MiiWriteValidFrame,
|
|
(PHY_BCTL_AUTONEG_MASK |
|
|
PHY_BCTL_RESTART_AUTONEG_MASK));
|
|
#endif
|
|
context->phy_state = eth_mcux_phy_state_restart;
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
k_work_submit(&context->phy_work);
|
|
#endif
|
|
break;
|
|
case eth_mcux_phy_state_wait:
|
|
case eth_mcux_phy_state_restart:
|
|
/* Start reading the PHY basic status. */
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
ENET_StartSMIRead(context->base, context->phy_addr,
|
|
PHY_BASICSTATUS_REG,
|
|
kENET_MiiReadValidFrame);
|
|
#endif
|
|
context->phy_state = eth_mcux_phy_state_read_status;
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
k_work_submit(&context->phy_work);
|
|
#endif
|
|
break;
|
|
case eth_mcux_phy_state_read_status:
|
|
/* PHY Basic status is available. */
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI) && ETH_MCUX_FIXED_LINK
|
|
link_up = true;
|
|
#else
|
|
status = ENET_ReadSMIData(context->base);
|
|
link_up = status & PHY_BSTATUS_LINKSTATUS_MASK;
|
|
#endif
|
|
if (link_up && !context->link_up && context->iface != NULL) {
|
|
/* Start reading the PHY control register. */
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
ENET_StartSMIRead(context->base, context->phy_addr,
|
|
PHY_CONTROL1_REG,
|
|
kENET_MiiReadValidFrame);
|
|
#endif
|
|
context->link_up = link_up;
|
|
context->phy_state = eth_mcux_phy_state_read_duplex;
|
|
net_eth_carrier_on(context->iface);
|
|
k_msleep(1);
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
k_work_submit(&context->phy_work);
|
|
#endif
|
|
} else if (!link_up && context->link_up && context->iface != NULL) {
|
|
LOG_INF("%s link down", eth_name(context->base));
|
|
context->link_up = link_up;
|
|
k_work_reschedule(&context->delayed_phy_work,
|
|
K_MSEC(CONFIG_ETH_MCUX_PHY_TICK_MS));
|
|
context->phy_state = eth_mcux_phy_state_wait;
|
|
net_eth_carrier_off(context->iface);
|
|
} else {
|
|
k_work_reschedule(&context->delayed_phy_work,
|
|
K_MSEC(CONFIG_ETH_MCUX_PHY_TICK_MS));
|
|
context->phy_state = eth_mcux_phy_state_wait;
|
|
}
|
|
|
|
break;
|
|
case eth_mcux_phy_state_read_duplex:
|
|
/* PHY control register is available. */
|
|
#if defined(CONFIG_ETH_MCUX_NO_PHY_SMI) && ETH_MCUX_FIXED_LINK
|
|
eth_mcux_get_phy_params(&phy_duplex, &phy_speed);
|
|
LOG_INF("%s - Fixed Link", eth_name(context->base));
|
|
#else
|
|
status = ENET_ReadSMIData(context->base);
|
|
eth_mcux_decode_duplex_and_speed(status,
|
|
&phy_duplex,
|
|
&phy_speed);
|
|
#endif
|
|
if (phy_speed != context->phy_speed ||
|
|
phy_duplex != context->phy_duplex) {
|
|
context->phy_speed = phy_speed;
|
|
context->phy_duplex = phy_duplex;
|
|
ENET_SetMII(context->base,
|
|
(enet_mii_speed_t) phy_speed,
|
|
(enet_mii_duplex_t) phy_duplex);
|
|
}
|
|
|
|
LOG_INF("%s enabled %sM %s-duplex mode.",
|
|
eth_name(context->base),
|
|
(phy_speed ? "100" : "10"),
|
|
(phy_duplex ? "full" : "half"));
|
|
k_work_reschedule(&context->delayed_phy_work,
|
|
K_MSEC(CONFIG_ETH_MCUX_PHY_TICK_MS));
|
|
context->phy_state = eth_mcux_phy_state_wait;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void eth_mcux_phy_work(struct k_work *item)
|
|
{
|
|
struct eth_context *context =
|
|
CONTAINER_OF(item, struct eth_context, phy_work);
|
|
|
|
eth_mcux_phy_event(context);
|
|
}
|
|
|
|
static void eth_mcux_delayed_phy_work(struct k_work *item)
|
|
{
|
|
struct k_work_delayable *dwork = k_work_delayable_from_work(item);
|
|
struct eth_context *context =
|
|
CONTAINER_OF(dwork, struct eth_context, delayed_phy_work);
|
|
|
|
eth_mcux_phy_event(context);
|
|
}
|
|
|
|
static void eth_mcux_phy_setup(struct eth_context *context)
|
|
{
|
|
#if defined(CONFIG_SOC_SERIES_IMXRT10XX) || defined(CONFIG_SOC_SERIES_IMXRT11XX)
|
|
status_t res;
|
|
uint16_t oms_override;
|
|
|
|
/* Disable MII interrupts to prevent triggering PHY events. */
|
|
ENET_DisableInterrupts(context->base, ENET_EIR_MII_MASK);
|
|
|
|
res = PHY_Read(context->phy_handle,
|
|
PHY_OMS_OVERRIDE_REG, &oms_override);
|
|
if (res != kStatus_Success) {
|
|
LOG_WRN("Reading PHY reg failed (status 0x%x)", res);
|
|
} else {
|
|
/* Based on strap-in pins the PHY can be in factory test mode.
|
|
* Force normal operation.
|
|
*/
|
|
oms_override &= ~PHY_OMS_FACTORY_MODE_MASK;
|
|
|
|
/* Prevent PHY entering NAND Tree mode override. */
|
|
if (oms_override & PHY_OMS_NANDTREE_MASK) {
|
|
oms_override &= ~PHY_OMS_NANDTREE_MASK;
|
|
}
|
|
|
|
res = PHY_Write(context->phy_handle,
|
|
PHY_OMS_OVERRIDE_REG, oms_override);
|
|
if (res != kStatus_Success) {
|
|
LOG_WRN("Writing PHY reg failed (status 0x%x)", res);
|
|
}
|
|
}
|
|
|
|
ENET_EnableInterrupts(context->base, ENET_EIR_MII_MASK);
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
|
|
static bool eth_get_ptp_data(struct net_if *iface, struct net_pkt *pkt)
|
|
{
|
|
int eth_hlen;
|
|
|
|
if (ntohs(NET_ETH_HDR(pkt)->type) != NET_ETH_PTYPE_PTP) {
|
|
return false;
|
|
}
|
|
|
|
eth_hlen = sizeof(struct net_eth_hdr);
|
|
|
|
net_pkt_set_priority(pkt, NET_PRIORITY_CA);
|
|
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_PTP_CLOCK_MCUX */
|
|
|
|
static int eth_tx(const struct device *dev, struct net_pkt *pkt)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
uint16_t total_len = net_pkt_get_len(pkt);
|
|
status_t status;
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
bool timestamped_frame;
|
|
#endif
|
|
|
|
/* Wait for a TX buffer descriptor to be available */
|
|
k_sem_take(&context->tx_buf_sem, K_FOREVER);
|
|
|
|
k_mutex_lock(&context->tx_frame_buf_mutex, K_FOREVER);
|
|
|
|
if (net_pkt_read(pkt, context->tx_frame_buf, total_len)) {
|
|
k_mutex_unlock(&context->tx_frame_buf_mutex);
|
|
return -EIO;
|
|
}
|
|
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
timestamped_frame = eth_get_ptp_data(net_pkt_iface(pkt), pkt);
|
|
if (timestamped_frame) {
|
|
status = ENET_SendFrame(context->base, &context->enet_handle,
|
|
context->tx_frame_buf, total_len, RING_ID, true, pkt);
|
|
if (!status) {
|
|
net_pkt_ref(pkt);
|
|
/*
|
|
* Network stack will modify the packet upon return,
|
|
* so wait for the packet to be timestamped,
|
|
* which will occur within the TX ISR, before
|
|
* returning
|
|
*/
|
|
k_sem_take(&context->ptp_ts_sem, K_FOREVER);
|
|
}
|
|
|
|
} else
|
|
#endif
|
|
{
|
|
status = ENET_SendFrame(context->base, &context->enet_handle,
|
|
context->tx_frame_buf, total_len, RING_ID, false, NULL);
|
|
}
|
|
|
|
if (status) {
|
|
LOG_ERR("ENET_SendFrame error: %d", (int)status);
|
|
k_mutex_unlock(&context->tx_frame_buf_mutex);
|
|
ENET_ReclaimTxDescriptor(context->base,
|
|
&context->enet_handle, RING_ID);
|
|
return -1;
|
|
}
|
|
|
|
k_mutex_unlock(&context->tx_frame_buf_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eth_rx(struct eth_context *context)
|
|
{
|
|
uint32_t frame_length = 0U;
|
|
struct net_if *iface;
|
|
struct net_pkt *pkt;
|
|
status_t status;
|
|
uint32_t ts;
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
enet_ptp_time_t ptpTimeData;
|
|
#endif
|
|
|
|
status = ENET_GetRxFrameSize(&context->enet_handle,
|
|
(uint32_t *)&frame_length, RING_ID);
|
|
if (status == kStatus_ENET_RxFrameEmpty) {
|
|
return 0;
|
|
} else if (status == kStatus_ENET_RxFrameError) {
|
|
enet_data_error_stats_t error_stats;
|
|
|
|
LOG_ERR("ENET_GetRxFrameSize return: %d", (int)status);
|
|
|
|
ENET_GetRxErrBeforeReadFrame(&context->enet_handle,
|
|
&error_stats, RING_ID);
|
|
goto flush;
|
|
}
|
|
|
|
if (frame_length > NET_ETH_MAX_FRAME_SIZE) {
|
|
LOG_ERR("frame too large (%d)", frame_length);
|
|
goto flush;
|
|
}
|
|
|
|
/* Using root iface. It will be updated in net_recv_data() */
|
|
pkt = net_pkt_rx_alloc_with_buffer(context->iface, frame_length,
|
|
AF_UNSPEC, 0, K_NO_WAIT);
|
|
if (!pkt) {
|
|
goto flush;
|
|
}
|
|
|
|
/* in case multiply thread access
|
|
* we need to protect it with mutex.
|
|
*/
|
|
k_mutex_lock(&context->rx_frame_buf_mutex, K_FOREVER);
|
|
|
|
status = ENET_ReadFrame(context->base, &context->enet_handle,
|
|
context->rx_frame_buf, frame_length, RING_ID, &ts);
|
|
if (status) {
|
|
LOG_ERR("ENET_ReadFrame failed: %d", (int)status);
|
|
net_pkt_unref(pkt);
|
|
|
|
k_mutex_unlock(&context->rx_frame_buf_mutex);
|
|
goto error;
|
|
}
|
|
|
|
if (net_pkt_write(pkt, context->rx_frame_buf, frame_length)) {
|
|
LOG_ERR("Unable to write frame into the pkt");
|
|
net_pkt_unref(pkt);
|
|
k_mutex_unlock(&context->rx_frame_buf_mutex);
|
|
goto error;
|
|
}
|
|
|
|
k_mutex_unlock(&context->rx_frame_buf_mutex);
|
|
|
|
/*
|
|
* Use MAC timestamp
|
|
*/
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
k_mutex_lock(&context->ptp_mutex, K_FOREVER);
|
|
if (eth_get_ptp_data(get_iface(context), pkt)) {
|
|
ENET_Ptp1588GetTimer(context->base, &context->enet_handle,
|
|
&ptpTimeData);
|
|
/* If latest timestamp reloads after getting from Rx BD,
|
|
* then second - 1 to make sure the actual Rx timestamp is
|
|
* accurate
|
|
*/
|
|
if (ptpTimeData.nanosecond < ts) {
|
|
ptpTimeData.second--;
|
|
}
|
|
|
|
pkt->timestamp.nanosecond = ts;
|
|
pkt->timestamp.second = ptpTimeData.second;
|
|
} else {
|
|
/* Invalid value. */
|
|
pkt->timestamp.nanosecond = UINT32_MAX;
|
|
pkt->timestamp.second = UINT64_MAX;
|
|
}
|
|
k_mutex_unlock(&context->ptp_mutex);
|
|
#endif /* CONFIG_PTP_CLOCK_MCUX */
|
|
|
|
iface = get_iface(context);
|
|
#if defined(CONFIG_NET_DSA)
|
|
iface = dsa_net_recv(iface, &pkt);
|
|
#endif
|
|
if (net_recv_data(iface, pkt) < 0) {
|
|
net_pkt_unref(pkt);
|
|
goto error;
|
|
}
|
|
|
|
return 1;
|
|
flush:
|
|
/* Flush the current read buffer. This operation can
|
|
* only report failure if there is no frame to flush,
|
|
* which cannot happen in this context.
|
|
*/
|
|
status = ENET_ReadFrame(context->base, &context->enet_handle, NULL,
|
|
0, RING_ID, NULL);
|
|
__ASSERT_NO_MSG(status == kStatus_Success);
|
|
error:
|
|
eth_stats_update_errors_rx(get_iface(context));
|
|
return -EIO;
|
|
}
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX) && defined(CONFIG_NET_L2_PTP)
|
|
static inline void ts_register_tx_event(struct eth_context *context,
|
|
enet_frame_info_t *frameinfo)
|
|
{
|
|
struct net_pkt *pkt;
|
|
|
|
pkt = frameinfo->context;
|
|
if (pkt && atomic_get(&pkt->atomic_ref) > 0) {
|
|
if (eth_get_ptp_data(net_pkt_iface(pkt), pkt)) {
|
|
if (frameinfo->isTsAvail) {
|
|
k_mutex_lock(&context->ptp_mutex, K_FOREVER);
|
|
|
|
pkt->timestamp.nanosecond =
|
|
frameinfo->timeStamp.nanosecond;
|
|
pkt->timestamp.second =
|
|
frameinfo->timeStamp.second;
|
|
|
|
net_if_add_tx_timestamp(pkt);
|
|
k_sem_give(&context->ptp_ts_sem);
|
|
k_mutex_unlock(&context->ptp_mutex);
|
|
}
|
|
}
|
|
|
|
net_pkt_unref(pkt);
|
|
} else {
|
|
if (IS_ENABLED(CONFIG_ETH_MCUX_PHY_EXTRA_DEBUG) && pkt) {
|
|
LOG_ERR("pkt %p already freed", pkt);
|
|
}
|
|
}
|
|
|
|
}
|
|
#endif /* CONFIG_PTP_CLOCK_MCUX && CONFIG_NET_L2_PTP */
|
|
|
|
static void eth_callback(ENET_Type *base, enet_handle_t *handle,
|
|
#if FSL_FEATURE_ENET_QUEUE > 1
|
|
uint32_t ringId,
|
|
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
|
|
enet_event_t event, enet_frame_info_t *frameinfo, void *param)
|
|
{
|
|
struct eth_context *context = param;
|
|
|
|
switch (event) {
|
|
case kENET_RxEvent:
|
|
k_sem_give(&context->rx_thread_sem);
|
|
break;
|
|
case kENET_TxEvent:
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX) && defined(CONFIG_NET_L2_PTP)
|
|
/* Register event */
|
|
ts_register_tx_event(context, frameinfo);
|
|
#endif /* CONFIG_PTP_CLOCK_MCUX && CONFIG_NET_L2_PTP */
|
|
/* Free the TX buffer. */
|
|
k_sem_give(&context->tx_buf_sem);
|
|
break;
|
|
case kENET_ErrEvent:
|
|
/* Error event: BABR/BABT/EBERR/LC/RL/UN/PLR. */
|
|
break;
|
|
case kENET_WakeUpEvent:
|
|
/* Wake up from sleep mode event. */
|
|
break;
|
|
case kENET_TimeStampEvent:
|
|
/* Time stamp event. */
|
|
/* Reset periodic timer to default value. */
|
|
context->base->ATPER = NSEC_PER_SEC;
|
|
break;
|
|
case kENET_TimeStampAvailEvent:
|
|
/* Time stamp available event. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void eth_rx_thread(void *arg1, void *unused1, void *unused2)
|
|
{
|
|
struct eth_context *context = (struct eth_context *)arg1;
|
|
|
|
while (1) {
|
|
if (k_sem_take(&context->rx_thread_sem, K_FOREVER) == 0) {
|
|
while (eth_rx(context) == 1) {
|
|
;
|
|
}
|
|
/* enable the IRQ for RX */
|
|
ENET_EnableInterrupts(context->base,
|
|
kENET_RxFrameInterrupt | kENET_RxBufferInterrupt);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_ETH_MCUX_PHY_RESET)
|
|
static int eth_phy_reset(const struct device *dev)
|
|
{
|
|
int err;
|
|
struct eth_context *context = dev->data;
|
|
|
|
/* pull up the ENET_INT before RESET. */
|
|
err = gpio_pin_configure_dt(&context->int_gpio, GPIO_OUTPUT_ACTIVE);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
return gpio_pin_configure_dt(&context->reset_gpio, GPIO_OUTPUT_INACTIVE);
|
|
}
|
|
|
|
static int eth_phy_init(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
|
|
/* RESET PHY chip. */
|
|
k_busy_wait(USEC_PER_MSEC * 500);
|
|
return gpio_pin_set_dt(&context->reset_gpio, 1);
|
|
}
|
|
#endif
|
|
|
|
static void eth_mcux_init(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
const enet_buffer_config_t *buffer_config = dev->config;
|
|
enet_config_t enet_config;
|
|
uint32_t sys_clock;
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
uint8_t ptp_multicast[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
|
|
uint8_t ptp_peer_multicast[6] = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x0E };
|
|
#endif
|
|
#if defined(CONFIG_MDNS_RESPONDER) || defined(CONFIG_MDNS_RESOLVER)
|
|
/* standard multicast MAC address */
|
|
uint8_t mdns_multicast[6] = { 0x01, 0x00, 0x5E, 0x00, 0x00, 0xFB };
|
|
#endif
|
|
|
|
context->phy_state = eth_mcux_phy_state_initial;
|
|
context->phy_handle->ops = &phyksz8081_ops;
|
|
|
|
#if defined(CONFIG_SOC_SERIES_IMXRT10XX)
|
|
#if DT_NODE_HAS_STATUS(DT_NODELABEL(enet), okay)
|
|
sys_clock = CLOCK_GetFreq(kCLOCK_IpgClk);
|
|
#endif
|
|
#if DT_NODE_HAS_STATUS(DT_NODELABEL(enet2), okay)
|
|
sys_clock = CLOCK_GetFreq(kCLOCK_EnetPll1Clk);
|
|
#endif
|
|
#elif defined(CONFIG_SOC_SERIES_IMXRT11XX)
|
|
sys_clock = CLOCK_GetRootClockFreq(kCLOCK_Root_Bus);
|
|
#else
|
|
sys_clock = CLOCK_GetFreq(kCLOCK_CoreSysClk);
|
|
#endif
|
|
|
|
ENET_GetDefaultConfig(&enet_config);
|
|
enet_config.interrupt |= kENET_RxFrameInterrupt;
|
|
enet_config.interrupt |= kENET_TxFrameInterrupt;
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
enet_config.interrupt |= kENET_MiiInterrupt;
|
|
#endif
|
|
enet_config.miiMode = kENET_RmiiMode;
|
|
enet_config.callback = eth_callback;
|
|
enet_config.userData = context;
|
|
|
|
if (IS_ENABLED(CONFIG_ETH_MCUX_PROMISCUOUS_MODE)) {
|
|
enet_config.macSpecialConfig |= kENET_ControlPromiscuousEnable;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_NET_VLAN)) {
|
|
enet_config.macSpecialConfig |= kENET_ControlVLANTagEnable;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ETH_MCUX_HW_ACCELERATION)) {
|
|
enet_config.txAccelerConfig |=
|
|
kENET_TxAccelIpCheckEnabled |
|
|
kENET_TxAccelProtoCheckEnabled;
|
|
enet_config.rxAccelerConfig |=
|
|
kENET_RxAccelIpCheckEnabled |
|
|
kENET_RxAccelProtoCheckEnabled;
|
|
}
|
|
|
|
ENET_Init(context->base,
|
|
&context->enet_handle,
|
|
&enet_config,
|
|
buffer_config,
|
|
context->mac_addr,
|
|
sys_clock);
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
ENET_AddMulticastGroup(context->base, ptp_multicast);
|
|
ENET_AddMulticastGroup(context->base, ptp_peer_multicast);
|
|
|
|
/* only for ERRATA_2579 */
|
|
context->ptp_config.channel = kENET_PtpTimerChannel3;
|
|
context->ptp_config.ptp1588ClockSrc_Hz =
|
|
CONFIG_ETH_MCUX_PTP_CLOCK_SRC_HZ;
|
|
context->clk_ratio = 1.0;
|
|
|
|
ENET_Ptp1588SetChannelMode(context->base, kENET_PtpTimerChannel3,
|
|
kENET_PtpChannelPulseHighonCompare, true);
|
|
ENET_Ptp1588Configure(context->base, &context->enet_handle,
|
|
&context->ptp_config);
|
|
#endif
|
|
|
|
#if defined(CONFIG_MDNS_RESPONDER) || defined(CONFIG_MDNS_RESOLVER)
|
|
ENET_AddMulticastGroup(context->base, mdns_multicast);
|
|
#endif
|
|
|
|
#if !defined(CONFIG_ETH_MCUX_NO_PHY_SMI)
|
|
ENET_SetSMI(context->base, sys_clock, false);
|
|
#endif
|
|
|
|
/* handle PHY setup after SMI initialization */
|
|
eth_mcux_phy_setup(context);
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
/* Enable reclaim of tx descriptors that will have the tx timestamp */
|
|
ENET_SetTxReclaim(&context->enet_handle, true, 0);
|
|
#endif
|
|
|
|
eth_mcux_phy_start(context);
|
|
}
|
|
|
|
static int eth_init(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
#if defined(CONFIG_PINCTRL)
|
|
int err;
|
|
|
|
err = pinctrl_apply_state(context->pincfg, PINCTRL_STATE_DEFAULT);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_PINCTRL */
|
|
|
|
#if defined(CONFIG_NET_POWER_MANAGEMENT)
|
|
const uint32_t inst = ENET_GetInstance(context->base);
|
|
|
|
context->clock = enet_clocks[inst];
|
|
#endif
|
|
|
|
#if defined(CONFIG_ETH_MCUX_PHY_RESET)
|
|
eth_phy_reset(dev);
|
|
eth_phy_init(dev);
|
|
#endif
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
k_mutex_init(&context->ptp_mutex);
|
|
k_sem_init(&context->ptp_ts_sem, 0, 1);
|
|
#endif
|
|
k_mutex_init(&context->rx_frame_buf_mutex);
|
|
k_mutex_init(&context->tx_frame_buf_mutex);
|
|
|
|
k_sem_init(&context->rx_thread_sem, 0, CONFIG_ETH_MCUX_RX_BUFFERS);
|
|
k_sem_init(&context->tx_buf_sem,
|
|
CONFIG_ETH_MCUX_TX_BUFFERS, CONFIG_ETH_MCUX_TX_BUFFERS);
|
|
k_work_init(&context->phy_work, eth_mcux_phy_work);
|
|
k_work_init_delayable(&context->delayed_phy_work,
|
|
eth_mcux_delayed_phy_work);
|
|
|
|
/* Start interruption-poll thread */
|
|
k_thread_create(&context->rx_thread, context->rx_thread_stack,
|
|
K_KERNEL_STACK_SIZEOF(context->rx_thread_stack),
|
|
eth_rx_thread, (void *) context, NULL, NULL,
|
|
K_PRIO_COOP(2),
|
|
0, K_NO_WAIT);
|
|
k_thread_name_set(&context->rx_thread, "mcux_eth_rx");
|
|
if (context->generate_mac) {
|
|
context->generate_mac(context->mac_addr);
|
|
}
|
|
|
|
eth_mcux_init(dev);
|
|
|
|
LOG_DBG("%s MAC %02x:%02x:%02x:%02x:%02x:%02x",
|
|
dev->name,
|
|
context->mac_addr[0], context->mac_addr[1],
|
|
context->mac_addr[2], context->mac_addr[3],
|
|
context->mac_addr[4], context->mac_addr[5]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void eth_iface_init(struct net_if *iface)
|
|
{
|
|
const struct device *dev = net_if_get_device(iface);
|
|
struct eth_context *context = dev->data;
|
|
|
|
net_if_set_link_addr(iface, context->mac_addr,
|
|
sizeof(context->mac_addr),
|
|
NET_LINK_ETHERNET);
|
|
|
|
if (context->iface == NULL) {
|
|
context->iface = iface;
|
|
}
|
|
|
|
#if defined(CONFIG_NET_DSA)
|
|
dsa_register_master_tx(iface, ð_tx);
|
|
#endif
|
|
ethernet_init(iface);
|
|
net_if_carrier_off(iface);
|
|
|
|
context->config_func();
|
|
}
|
|
|
|
static enum ethernet_hw_caps eth_mcux_get_capabilities(const struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
return ETHERNET_LINK_10BASE_T |
|
|
ETHERNET_HW_FILTERING |
|
|
#if defined(CONFIG_NET_VLAN)
|
|
ETHERNET_HW_VLAN |
|
|
#endif
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
ETHERNET_PTP |
|
|
#endif
|
|
#if defined(CONFIG_NET_DSA)
|
|
ETHERNET_DSA_MASTER_PORT |
|
|
#endif
|
|
#if defined(CONFIG_ETH_MCUX_HW_ACCELERATION)
|
|
ETHERNET_HW_TX_CHKSUM_OFFLOAD |
|
|
ETHERNET_HW_RX_CHKSUM_OFFLOAD |
|
|
#endif
|
|
ETHERNET_AUTO_NEGOTIATION_SET |
|
|
ETHERNET_LINK_100BASE_T;
|
|
}
|
|
|
|
static int eth_mcux_set_config(const struct device *dev,
|
|
enum ethernet_config_type type,
|
|
const struct ethernet_config *config)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
|
|
switch (type) {
|
|
case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
|
|
memcpy(context->mac_addr,
|
|
config->mac_address.addr,
|
|
sizeof(context->mac_addr));
|
|
ENET_SetMacAddr(context->base, context->mac_addr);
|
|
net_if_set_link_addr(context->iface, context->mac_addr,
|
|
sizeof(context->mac_addr),
|
|
NET_LINK_ETHERNET);
|
|
LOG_DBG("%s MAC set to %02x:%02x:%02x:%02x:%02x:%02x",
|
|
dev->name,
|
|
context->mac_addr[0], context->mac_addr[1],
|
|
context->mac_addr[2], context->mac_addr[3],
|
|
context->mac_addr[4], context->mac_addr[5]);
|
|
return 0;
|
|
case ETHERNET_CONFIG_TYPE_FILTER:
|
|
/* The ENET driver does not modify the address buffer but the API is not const */
|
|
if (config->filter.set) {
|
|
ENET_AddMulticastGroup(context->base,
|
|
(uint8_t *)config->filter.mac_address.addr);
|
|
} else {
|
|
ENET_LeaveMulticastGroup(context->base,
|
|
(uint8_t *)config->filter.mac_address.addr);
|
|
}
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
static const struct device *eth_mcux_get_ptp_clock(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
|
|
return context->ptp_clock;
|
|
}
|
|
#endif
|
|
|
|
static const struct ethernet_api api_funcs = {
|
|
.iface_api.init = eth_iface_init,
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
.get_ptp_clock = eth_mcux_get_ptp_clock,
|
|
#endif
|
|
.get_capabilities = eth_mcux_get_capabilities,
|
|
.set_config = eth_mcux_set_config,
|
|
#if defined(CONFIG_NET_DSA)
|
|
.send = dsa_tx,
|
|
#else
|
|
.send = eth_tx,
|
|
#endif
|
|
};
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
static void eth_mcux_ptp_isr(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
unsigned int irq_lock_key = irq_lock();
|
|
enet_ptp_timer_channel_t channel;
|
|
|
|
/* clear channel */
|
|
for (channel = kENET_PtpTimerChannel1; channel <= kENET_PtpTimerChannel4; channel++) {
|
|
if (ENET_Ptp1588GetChannelStatus(context->base, channel)) {
|
|
ENET_Ptp1588ClearChannelStatus(context->base, channel);
|
|
}
|
|
}
|
|
ENET_TimeStampIRQHandler(context->base, &context->enet_handle);
|
|
irq_unlock(irq_lock_key);
|
|
}
|
|
#endif
|
|
|
|
#if DT_INST_IRQ_HAS_NAME(0, common) || DT_INST_IRQ_HAS_NAME(1, common)
|
|
static void eth_mcux_common_isr(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
uint32_t EIR = ENET_GetInterruptStatus(context->base);
|
|
unsigned int irq_lock_key = irq_lock();
|
|
|
|
if (EIR & (kENET_RxBufferInterrupt | kENET_RxFrameInterrupt)) {
|
|
/* disable the IRQ for RX */
|
|
context->rx_irq_num++;
|
|
#if FSL_FEATURE_ENET_QUEUE > 1
|
|
/* Only use ring 0 in this driver */
|
|
ENET_ReceiveIRQHandler(context->base, &context->enet_handle, 0);
|
|
#else
|
|
ENET_ReceiveIRQHandler(context->base, &context->enet_handle);
|
|
#endif
|
|
ENET_DisableInterrupts(context->base, kENET_RxFrameInterrupt |
|
|
kENET_RxBufferInterrupt);
|
|
}
|
|
|
|
if (EIR & kENET_TxFrameInterrupt) {
|
|
#if FSL_FEATURE_ENET_QUEUE > 1
|
|
ENET_TransmitIRQHandler(context->base, &context->enet_handle, 0);
|
|
#else
|
|
ENET_TransmitIRQHandler(context->base, &context->enet_handle);
|
|
#endif
|
|
}
|
|
|
|
if (EIR | kENET_TxBufferInterrupt) {
|
|
ENET_ClearInterruptStatus(context->base, kENET_TxBufferInterrupt);
|
|
ENET_DisableInterrupts(context->base, kENET_TxBufferInterrupt);
|
|
}
|
|
|
|
if (EIR & ENET_EIR_MII_MASK) {
|
|
k_work_submit(&context->phy_work);
|
|
ENET_ClearInterruptStatus(context->base, kENET_MiiInterrupt);
|
|
}
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
if (EIR & ENET_TS_INTERRUPT) {
|
|
ENET_TimeStampIRQHandler(context->base, &context->enet_handle);
|
|
}
|
|
#endif
|
|
irq_unlock(irq_lock_key);
|
|
}
|
|
#endif
|
|
|
|
#if DT_INST_IRQ_HAS_NAME(0, rx) || DT_INST_IRQ_HAS_NAME(1, rx)
|
|
static void eth_mcux_rx_isr(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
|
|
ENET_DisableInterrupts(context->base, kENET_RxFrameInterrupt | kENET_RxBufferInterrupt);
|
|
ENET_ReceiveIRQHandler(context->base, &context->enet_handle);
|
|
}
|
|
#endif
|
|
|
|
#if DT_INST_IRQ_HAS_NAME(0, tx) || DT_INST_IRQ_HAS_NAME(1, tx)
|
|
static void eth_mcux_tx_isr(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
#if FSL_FEATURE_ENET_QUEUE > 1
|
|
ENET_TransmitIRQHandler(context->base, &context->enet_handle, 0);
|
|
#else
|
|
ENET_TransmitIRQHandler(context->base, &context->enet_handle);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if DT_INST_IRQ_HAS_NAME(0, err) || DT_INST_IRQ_HAS_NAME(1, err)
|
|
static void eth_mcux_err_isr(const struct device *dev)
|
|
{
|
|
struct eth_context *context = dev->data;
|
|
uint32_t pending = ENET_GetInterruptStatus(context->base);
|
|
|
|
if (pending & ENET_EIR_MII_MASK) {
|
|
k_work_submit(&context->phy_work);
|
|
ENET_ClearInterruptStatus(context->base, kENET_MiiInterrupt);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_SOC_SERIES_IMXRT10XX)
|
|
#define ETH_MCUX_UNIQUE_ID (OCOTP->CFG1 ^ OCOTP->CFG2)
|
|
#elif defined(CONFIG_SOC_SERIES_IMXRT11XX)
|
|
#define ETH_MCUX_UNIQUE_ID (OCOTP->FUSEN[40].FUSE)
|
|
#elif defined(CONFIG_SOC_SERIES_KINETIS_K6X)
|
|
#define ETH_MCUX_UNIQUE_ID (SIM->UIDH ^ SIM->UIDMH ^ SIM->UIDML ^ SIM->UIDL)
|
|
#else
|
|
#error "Unsupported SOC"
|
|
#endif
|
|
|
|
#define ETH_MCUX_NONE
|
|
|
|
#define ETH_MCUX_IRQ_INIT(n, name) \
|
|
do { \
|
|
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(n, name, irq), \
|
|
DT_INST_IRQ_BY_NAME(n, name, priority), \
|
|
eth_mcux_##name##_isr, \
|
|
DEVICE_DT_INST_GET(n), \
|
|
0); \
|
|
irq_enable(DT_INST_IRQ_BY_NAME(n, name, irq)); \
|
|
} while (false)
|
|
|
|
#define ETH_MCUX_IRQ(n, name) \
|
|
COND_CODE_1(DT_INST_IRQ_HAS_NAME(n, name), \
|
|
(ETH_MCUX_IRQ_INIT(n, name)), \
|
|
(ETH_MCUX_NONE))
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
#define PTP_INST_NODEID(n) DT_INST_CHILD(n, ptp)
|
|
|
|
#define ETH_MCUX_IRQ_PTP_INIT(n) \
|
|
do { \
|
|
IRQ_CONNECT(DT_IRQ_BY_NAME(PTP_INST_NODEID(n), ieee1588_tmr, irq), \
|
|
DT_IRQ_BY_NAME(PTP_INST_NODEID(n), ieee1588_tmr, priority), \
|
|
eth_mcux_ptp_isr, \
|
|
DEVICE_DT_INST_GET(n), \
|
|
0); \
|
|
irq_enable(DT_IRQ_BY_NAME(PTP_INST_NODEID(n), ieee1588_tmr, irq)); \
|
|
} while (false)
|
|
|
|
#define ETH_MCUX_IRQ_PTP(n) \
|
|
COND_CODE_1(DT_NODE_HAS_STATUS(PTP_INST_NODEID(n), okay), \
|
|
(ETH_MCUX_IRQ_PTP_INIT(n)), \
|
|
(ETH_MCUX_NONE))
|
|
|
|
#define ETH_MCUX_PTP_FRAMEINFO_ARRAY(n) \
|
|
static enet_frame_info_t \
|
|
eth##n##_tx_frameinfo_array[CONFIG_ETH_MCUX_TX_BUFFERS];
|
|
|
|
#define ETH_MCUX_PTP_FRAMEINFO(n) \
|
|
.txFrameInfo = eth##n##_tx_frameinfo_array,
|
|
#else
|
|
#define ETH_MCUX_IRQ_PTP(n)
|
|
|
|
#define ETH_MCUX_PTP_FRAMEINFO_ARRAY(n)
|
|
|
|
#define ETH_MCUX_PTP_FRAMEINFO(n) \
|
|
.txFrameInfo = NULL,
|
|
#endif
|
|
|
|
#define ETH_MCUX_GENERATE_MAC_RANDOM(n) \
|
|
static void generate_eth##n##_mac(uint8_t *mac_addr) \
|
|
{ \
|
|
gen_random_mac(mac_addr, \
|
|
FREESCALE_OUI_B0, \
|
|
FREESCALE_OUI_B1, \
|
|
FREESCALE_OUI_B2); \
|
|
}
|
|
|
|
#define ETH_MCUX_GENERATE_MAC_UNIQUE(n) \
|
|
static void generate_eth##n##_mac(uint8_t *mac_addr) \
|
|
{ \
|
|
uint32_t id = ETH_MCUX_UNIQUE_ID; \
|
|
\
|
|
mac_addr[0] = FREESCALE_OUI_B0; \
|
|
mac_addr[0] |= 0x02; /* force LAA bit */ \
|
|
mac_addr[1] = FREESCALE_OUI_B1; \
|
|
mac_addr[2] = FREESCALE_OUI_B2; \
|
|
mac_addr[3] = id >> 8; \
|
|
mac_addr[4] = id >> 16; \
|
|
mac_addr[5] = id >> 0; \
|
|
mac_addr[5] += n; \
|
|
}
|
|
|
|
#define ETH_MCUX_GENERATE_MAC(n) \
|
|
COND_CODE_1(DT_INST_PROP(n, zephyr_random_mac_address), \
|
|
(ETH_MCUX_GENERATE_MAC_RANDOM(n)), \
|
|
(ETH_MCUX_GENERATE_MAC_UNIQUE(n)))
|
|
|
|
#define ETH_MCUX_MAC_ADDR_LOCAL(n) \
|
|
.mac_addr = DT_INST_PROP(n, local_mac_address), \
|
|
.generate_mac = NULL,
|
|
|
|
#define ETH_MCUX_MAC_ADDR_GENERATE(n) \
|
|
.mac_addr = {0}, \
|
|
.generate_mac = generate_eth##n##_mac,
|
|
|
|
#define ETH_MCUX_MAC_ADDR(n) \
|
|
COND_CODE_1(ETH_MCUX_MAC_ADDR_TO_BOOL(n), \
|
|
(ETH_MCUX_MAC_ADDR_LOCAL(n)), \
|
|
(ETH_MCUX_MAC_ADDR_GENERATE(n)))
|
|
|
|
#ifdef CONFIG_SOC_FAMILY_KINETIS
|
|
#define ETH_MCUX_POWER_INIT(n) \
|
|
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
|
|
|
|
#define ETH_MCUX_POWER(n) \
|
|
COND_CODE_1(CONFIG_NET_POWER_MANAGEMENT, \
|
|
(ETH_MCUX_POWER_INIT(n)), \
|
|
(ETH_MCUX_NONE))
|
|
#define ETH_MCUX_PM_DEVICE_INIT(n) \
|
|
PM_DEVICE_DT_INST_DEFINE(n, eth_mcux_device_pm_action);
|
|
#define ETH_MCUX_PM_DEVICE_GET(n) PM_DEVICE_DT_INST_GET(n)
|
|
#else
|
|
#define ETH_MCUX_POWER(n)
|
|
#define ETH_MCUX_PM_DEVICE_INIT(n)
|
|
#define ETH_MCUX_PM_DEVICE_GET(n) NULL
|
|
#endif /* CONFIG_SOC_FAMILY_KINETIS */
|
|
|
|
#define ETH_MCUX_GEN_MAC(n) \
|
|
COND_CODE_0(ETH_MCUX_MAC_ADDR_TO_BOOL(n), \
|
|
(ETH_MCUX_GENERATE_MAC(n)), \
|
|
(ETH_MCUX_NONE))
|
|
|
|
/*
|
|
* In the below code we explicitly define
|
|
* ETH_MCUX_MAC_ADDR_TO_BOOL_0 for the '0' instance of enet driver.
|
|
*
|
|
* For instance N one shall add definition for ETH_MCUX_MAC_ADDR_TO_BOOL_N
|
|
*/
|
|
#if (NODE_HAS_VALID_MAC_ADDR(DT_DRV_INST(0))) == 0
|
|
#define ETH_MCUX_MAC_ADDR_TO_BOOL_0 0
|
|
#else
|
|
#define ETH_MCUX_MAC_ADDR_TO_BOOL_0 1
|
|
#endif
|
|
#define ETH_MCUX_MAC_ADDR_TO_BOOL(n) ETH_MCUX_MAC_ADDR_TO_BOOL_##n
|
|
|
|
#if defined(CONFIG_PINCTRL)
|
|
#define ETH_MCUX_PINCTRL_DEFINE(n) PINCTRL_DT_INST_DEFINE(n);
|
|
#define ETH_MCUX_PINCTRL_INIT(n) .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n),
|
|
#else
|
|
#define ETH_MCUX_PINCTRL_DEFINE(n)
|
|
#define ETH_MCUX_PINCTRL_INIT(n)
|
|
#endif
|
|
|
|
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay) && \
|
|
CONFIG_ETH_MCUX_USE_DTCM_FOR_DMA_BUFFER
|
|
/* Use DTCM for hardware DMA buffers */
|
|
#define _mcux_dma_desc __dtcm_bss_section
|
|
#define _mcux_dma_buffer __dtcm_noinit_section
|
|
#define _mcux_driver_buffer __dtcm_noinit_section
|
|
#elif defined(CONFIG_NOCACHE_MEMORY)
|
|
#define _mcux_dma_desc __nocache
|
|
#define _mcux_dma_buffer __nocache
|
|
#define _mcux_driver_buffer
|
|
#else
|
|
#define _mcux_dma_desc
|
|
#define _mcux_dma_buffer
|
|
#define _mcux_driver_buffer
|
|
#endif
|
|
|
|
#if defined(CONFIG_ETH_MCUX_PHY_RESET)
|
|
#define ETH_MCUX_PHY_GPIOS(n) \
|
|
.int_gpio = GPIO_DT_SPEC_INST_GET(n, int_gpios), \
|
|
.reset_gpio = GPIO_DT_SPEC_INST_GET(n, reset_gpios),
|
|
#else
|
|
#define ETH_MCUX_PHY_GPIOS(n)
|
|
#endif
|
|
|
|
#define ETH_MCUX_INIT(n) \
|
|
ETH_MCUX_GEN_MAC(n) \
|
|
\
|
|
ETH_MCUX_PINCTRL_DEFINE(n) \
|
|
\
|
|
static void eth##n##_config_func(void); \
|
|
static _mcux_driver_buffer uint8_t \
|
|
tx_enet_frame_##n##_buf[NET_ETH_MAX_FRAME_SIZE]; \
|
|
static _mcux_driver_buffer uint8_t \
|
|
rx_enet_frame_##n##_buf[NET_ETH_MAX_FRAME_SIZE]; \
|
|
static status_t _MDIO_Write(uint8_t phyAddr, uint8_t regAddr, uint16_t data) \
|
|
{ \
|
|
return ENET_MDIOWrite((ENET_Type *)DT_INST_REG_ADDR(n), phyAddr, regAddr, data);\
|
|
}; \
|
|
\
|
|
static status_t _MDIO_Read(uint8_t phyAddr, uint8_t regAddr, uint16_t *pData) \
|
|
{ \
|
|
return ENET_MDIORead((ENET_Type *)DT_INST_REG_ADDR(n), phyAddr, regAddr, pData); \
|
|
}; \
|
|
\
|
|
static struct _phy_resource eth##n##_phy_resource = { \
|
|
.read = _MDIO_Read, \
|
|
.write = _MDIO_Write \
|
|
}; \
|
|
static phy_handle_t eth##n##_phy_handle = { \
|
|
.resource = (void *)ð##n##_phy_resource \
|
|
}; \
|
|
static struct _phy_resource eth##n##_phy_config; \
|
|
\
|
|
static struct eth_context eth##n##_context = { \
|
|
.base = (ENET_Type *)DT_INST_REG_ADDR(n), \
|
|
.config_func = eth##n##_config_func, \
|
|
.phy_config = ð##n##_phy_config, \
|
|
.phy_addr = DT_INST_PROP(n, phy_addr), \
|
|
.phy_duplex = kPHY_FullDuplex, \
|
|
.phy_speed = kPHY_Speed100M, \
|
|
.phy_handle = ð##n##_phy_handle, \
|
|
.tx_frame_buf = tx_enet_frame_##n##_buf, \
|
|
.rx_frame_buf = rx_enet_frame_##n##_buf, \
|
|
ETH_MCUX_PINCTRL_INIT(n) \
|
|
ETH_MCUX_PHY_GPIOS(n) \
|
|
ETH_MCUX_MAC_ADDR(n) \
|
|
ETH_MCUX_POWER(n) \
|
|
}; \
|
|
\
|
|
static __aligned(ENET_BUFF_ALIGNMENT) \
|
|
_mcux_dma_desc \
|
|
enet_rx_bd_struct_t \
|
|
eth##n##_rx_buffer_desc[CONFIG_ETH_MCUX_RX_BUFFERS]; \
|
|
\
|
|
static __aligned(ENET_BUFF_ALIGNMENT) \
|
|
_mcux_dma_desc \
|
|
enet_tx_bd_struct_t \
|
|
eth##n##_tx_buffer_desc[CONFIG_ETH_MCUX_TX_BUFFERS]; \
|
|
\
|
|
static uint8_t __aligned(ENET_BUFF_ALIGNMENT) \
|
|
_mcux_dma_buffer \
|
|
eth##n##_rx_buffer[CONFIG_ETH_MCUX_RX_BUFFERS] \
|
|
[ETH_MCUX_BUFFER_SIZE]; \
|
|
\
|
|
static uint8_t __aligned(ENET_BUFF_ALIGNMENT) \
|
|
_mcux_dma_buffer \
|
|
eth##n##_tx_buffer[CONFIG_ETH_MCUX_TX_BUFFERS] \
|
|
[ETH_MCUX_BUFFER_SIZE]; \
|
|
\
|
|
ETH_MCUX_PTP_FRAMEINFO_ARRAY(n) \
|
|
\
|
|
static const enet_buffer_config_t eth##n##_buffer_config = { \
|
|
.rxBdNumber = CONFIG_ETH_MCUX_RX_BUFFERS, \
|
|
.txBdNumber = CONFIG_ETH_MCUX_TX_BUFFERS, \
|
|
.rxBuffSizeAlign = ETH_MCUX_BUFFER_SIZE, \
|
|
.txBuffSizeAlign = ETH_MCUX_BUFFER_SIZE, \
|
|
.rxBdStartAddrAlign = eth##n##_rx_buffer_desc, \
|
|
.txBdStartAddrAlign = eth##n##_tx_buffer_desc, \
|
|
.rxBufferAlign = eth##n##_rx_buffer[0], \
|
|
.txBufferAlign = eth##n##_tx_buffer[0], \
|
|
.rxMaintainEnable = true, \
|
|
.txMaintainEnable = true, \
|
|
ETH_MCUX_PTP_FRAMEINFO(n) \
|
|
}; \
|
|
\
|
|
ETH_MCUX_PM_DEVICE_INIT(n) \
|
|
\
|
|
ETH_NET_DEVICE_DT_INST_DEFINE(n, \
|
|
eth_init, \
|
|
ETH_MCUX_PM_DEVICE_GET(n), \
|
|
ð##n##_context, \
|
|
ð##n##_buffer_config, \
|
|
CONFIG_ETH_INIT_PRIORITY, \
|
|
&api_funcs, \
|
|
NET_ETH_MTU); \
|
|
\
|
|
static void eth##n##_config_func(void) \
|
|
{ \
|
|
ETH_MCUX_IRQ(n, rx); \
|
|
ETH_MCUX_IRQ(n, tx); \
|
|
ETH_MCUX_IRQ(n, err); \
|
|
ETH_MCUX_IRQ(n, common); \
|
|
ETH_MCUX_IRQ_PTP(n); \
|
|
} \
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ETH_MCUX_INIT)
|
|
|
|
#if defined(CONFIG_PTP_CLOCK_MCUX)
|
|
struct ptp_context {
|
|
struct eth_context *eth_context;
|
|
#if defined(CONFIG_PINCTRL)
|
|
const struct pinctrl_dev_config *pincfg;
|
|
#endif /* CONFIG_PINCTRL */
|
|
};
|
|
|
|
#if defined(CONFIG_PINCTRL)
|
|
#define ETH_MCUX_PTP_PINCTRL_DEFINE(n) PINCTRL_DT_DEFINE(n);
|
|
#define ETH_MCUX_PTP_PINCTRL_INIT(n) .pincfg = PINCTRL_DT_DEV_CONFIG_GET(n),
|
|
#else
|
|
#define ETH_MCUX_PTP_PINCTRL_DEFINE(n)
|
|
#define ETH_MCUX_PTP_PINCTRL_INIT(n)
|
|
#endif /* CONFIG_PINCTRL */
|
|
|
|
ETH_MCUX_PTP_PINCTRL_DEFINE(DT_NODELABEL(ptp))
|
|
|
|
static struct ptp_context ptp_mcux_0_context = {
|
|
ETH_MCUX_PTP_PINCTRL_INIT(DT_NODELABEL(ptp))
|
|
};
|
|
|
|
static int ptp_clock_mcux_set(const struct device *dev,
|
|
struct net_ptp_time *tm)
|
|
{
|
|
struct ptp_context *ptp_context = dev->data;
|
|
struct eth_context *context = ptp_context->eth_context;
|
|
enet_ptp_time_t enet_time;
|
|
|
|
enet_time.second = tm->second;
|
|
enet_time.nanosecond = tm->nanosecond;
|
|
|
|
ENET_Ptp1588SetTimer(context->base, &context->enet_handle, &enet_time);
|
|
return 0;
|
|
}
|
|
|
|
static int ptp_clock_mcux_get(const struct device *dev,
|
|
struct net_ptp_time *tm)
|
|
{
|
|
struct ptp_context *ptp_context = dev->data;
|
|
struct eth_context *context = ptp_context->eth_context;
|
|
enet_ptp_time_t enet_time;
|
|
|
|
ENET_Ptp1588GetTimer(context->base, &context->enet_handle, &enet_time);
|
|
|
|
tm->second = enet_time.second;
|
|
tm->nanosecond = enet_time.nanosecond;
|
|
return 0;
|
|
}
|
|
|
|
static int ptp_clock_mcux_adjust(const struct device *dev, int increment)
|
|
{
|
|
struct ptp_context *ptp_context = dev->data;
|
|
struct eth_context *context = ptp_context->eth_context;
|
|
int key, ret;
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
if ((increment <= (int32_t)(-NSEC_PER_SEC)) ||
|
|
(increment >= (int32_t)NSEC_PER_SEC)) {
|
|
ret = -EINVAL;
|
|
} else {
|
|
key = irq_lock();
|
|
if (context->base->ATPER != NSEC_PER_SEC) {
|
|
ret = -EBUSY;
|
|
} else {
|
|
/* Seconds counter is handled by software. Change the
|
|
* period of one software second to adjust the clock.
|
|
*/
|
|
context->base->ATPER = NSEC_PER_SEC - increment;
|
|
ret = 0;
|
|
}
|
|
irq_unlock(key);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ptp_clock_mcux_rate_adjust(const struct device *dev, double ratio)
|
|
{
|
|
const int hw_inc = NSEC_PER_SEC / CONFIG_ETH_MCUX_PTP_CLOCK_SRC_HZ;
|
|
struct ptp_context *ptp_context = dev->data;
|
|
struct eth_context *context = ptp_context->eth_context;
|
|
int corr;
|
|
int32_t mul;
|
|
double val;
|
|
|
|
/* No change needed. */
|
|
if ((ratio > 1.0 && ratio - 1.0 < 0.00000001) ||
|
|
(ratio < 1.0 && 1.0 - ratio < 0.00000001)) {
|
|
return 0;
|
|
}
|
|
|
|
ratio *= context->clk_ratio;
|
|
|
|
/* Limit possible ratio. */
|
|
if ((ratio > 1.0 + 1.0/(2 * hw_inc)) ||
|
|
(ratio < 1.0 - 1.0/(2 * hw_inc))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Save new ratio. */
|
|
context->clk_ratio = ratio;
|
|
|
|
if (ratio < 1.0) {
|
|
corr = hw_inc - 1;
|
|
val = 1.0 / (hw_inc * (1.0 - ratio));
|
|
} else if (ratio > 1.0) {
|
|
corr = hw_inc + 1;
|
|
val = 1.0 / (hw_inc * (ratio - 1.0));
|
|
} else {
|
|
val = 0;
|
|
corr = hw_inc;
|
|
}
|
|
|
|
if (val >= INT32_MAX) {
|
|
/* Value is too high.
|
|
* It is not possible to adjust the rate of the clock.
|
|
*/
|
|
mul = 0;
|
|
} else {
|
|
mul = val;
|
|
}
|
|
k_mutex_lock(&context->ptp_mutex, K_FOREVER);
|
|
ENET_Ptp1588AdjustTimer(context->base, corr, mul);
|
|
k_mutex_unlock(&context->ptp_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct ptp_clock_driver_api api = {
|
|
.set = ptp_clock_mcux_set,
|
|
.get = ptp_clock_mcux_get,
|
|
.adjust = ptp_clock_mcux_adjust,
|
|
.rate_adjust = ptp_clock_mcux_rate_adjust,
|
|
};
|
|
|
|
static int ptp_mcux_init(const struct device *port)
|
|
{
|
|
const struct device *const eth_dev = DEVICE_DT_GET(DT_NODELABEL(enet));
|
|
struct eth_context *context = eth_dev->data;
|
|
struct ptp_context *ptp_context = port->data;
|
|
#if defined(CONFIG_PINCTRL)
|
|
int err;
|
|
|
|
err = pinctrl_apply_state(ptp_context->pincfg, PINCTRL_STATE_DEFAULT);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_PINCTRL */
|
|
|
|
context->ptp_clock = port;
|
|
ptp_context->eth_context = context;
|
|
|
|
return 0;
|
|
}
|
|
|
|
DEVICE_DEFINE(mcux_ptp_clock_0, PTP_CLOCK_NAME, ptp_mcux_init,
|
|
NULL, &ptp_mcux_0_context, NULL, POST_KERNEL,
|
|
CONFIG_ETH_MCUX_PTP_CLOCK_INIT_PRIO, &api);
|
|
|
|
#endif /* CONFIG_PTP_CLOCK_MCUX */
|