4c7b77a716
Add support for "absolute" timeouts, which are expressed relative to system uptime instead of deltas from current time. These allow for more race-resistant code to be written by allowing application code to do a single timeout computation, once, and then reuse the timeout value even if the thread wakes up and needs to suspend again later. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
262 lines
6.2 KiB
C
262 lines
6.2 KiB
C
/*
|
|
* Copyright (c) 1997-2016 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <debug/object_tracing_common.h>
|
|
#include <init.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <syscall_handler.h>
|
|
#include <stdbool.h>
|
|
#include <spinlock.h>
|
|
|
|
static struct k_spinlock lock;
|
|
|
|
#ifdef CONFIG_OBJECT_TRACING
|
|
|
|
struct k_timer *_trace_list_k_timer;
|
|
|
|
/*
|
|
* Complete initialization of statically defined timers.
|
|
*/
|
|
static int init_timer_module(struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
Z_STRUCT_SECTION_FOREACH(k_timer, timer) {
|
|
SYS_TRACING_OBJ_INIT(k_timer, timer);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_timer_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
#endif /* CONFIG_OBJECT_TRACING */
|
|
|
|
/**
|
|
* @brief Handle expiration of a kernel timer object.
|
|
*
|
|
* @param t Timeout used by the timer.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void z_timer_expiration_handler(struct _timeout *t)
|
|
{
|
|
struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout);
|
|
struct k_thread *thread;
|
|
|
|
/*
|
|
* if the timer is periodic, start it again; don't add _TICK_ALIGN
|
|
* since we're already aligned to a tick boundary
|
|
*/
|
|
if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) &&
|
|
!K_TIMEOUT_EQ(timer->period, K_FOREVER)) {
|
|
z_add_timeout(&timer->timeout, z_timer_expiration_handler,
|
|
timer->period);
|
|
}
|
|
|
|
/* update timer's status */
|
|
timer->status += 1U;
|
|
|
|
/* invoke timer expiry function */
|
|
if (timer->expiry_fn != NULL) {
|
|
timer->expiry_fn(timer);
|
|
}
|
|
|
|
thread = z_waitq_head(&timer->wait_q);
|
|
|
|
if (thread == NULL) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Interrupts _DO NOT_ have to be locked in this specific
|
|
* instance of thread unpending because a) this is the only
|
|
* place a thread can be taken off this pend queue, and b) the
|
|
* only place a thread can be put on the pend queue is at
|
|
* thread level, which of course cannot interrupt the current
|
|
* context.
|
|
*/
|
|
z_unpend_thread_no_timeout(thread);
|
|
|
|
z_ready_thread(thread);
|
|
|
|
arch_thread_return_value_set(thread, 0);
|
|
}
|
|
|
|
|
|
void k_timer_init(struct k_timer *timer,
|
|
k_timer_expiry_t expiry_fn,
|
|
k_timer_stop_t stop_fn)
|
|
{
|
|
timer->expiry_fn = expiry_fn;
|
|
timer->stop_fn = stop_fn;
|
|
timer->status = 0U;
|
|
|
|
z_waitq_init(&timer->wait_q);
|
|
z_init_timeout(&timer->timeout);
|
|
SYS_TRACING_OBJ_INIT(k_timer, timer);
|
|
|
|
timer->user_data = NULL;
|
|
|
|
z_object_init(timer);
|
|
}
|
|
|
|
|
|
void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration,
|
|
k_timeout_t period)
|
|
{
|
|
#ifdef CONFIG_LEGACY_TIMEOUT_API
|
|
duration = k_ms_to_ticks_ceil32(duration);
|
|
period = k_ms_to_ticks_ceil32(period);
|
|
#else
|
|
/* z_add_timeout() always adds one to the incoming tick count
|
|
* to round up to the next tick (by convention it waits for
|
|
* "at least as long as the specified timeout"), but the
|
|
* period interval is always guaranteed to be reset from
|
|
* within the timer ISR, so no round up is desired. Subtract
|
|
* one.
|
|
*
|
|
* Note that the duration (!) value gets the same treatment
|
|
* for backwards compatibility. This is unfortunate
|
|
* (i.e. k_timer_start() doesn't treat its initial sleep
|
|
* argument the same way k_sleep() does), but historical. The
|
|
* timer_api test relies on this behavior.
|
|
*/
|
|
period.ticks = MAX(period.ticks - 1, 0);
|
|
if (Z_TICK_ABS(duration.ticks) < 0) {
|
|
duration.ticks = MAX(duration.ticks - 1, 0);
|
|
}
|
|
#endif
|
|
|
|
(void)z_abort_timeout(&timer->timeout);
|
|
timer->period = period;
|
|
timer->status = 0U;
|
|
|
|
z_add_timeout(&timer->timeout, z_timer_expiration_handler,
|
|
duration);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_timer_start(struct k_timer *timer,
|
|
k_timeout_t duration,
|
|
k_timeout_t period)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
|
|
z_impl_k_timer_start(timer, duration, period);
|
|
}
|
|
#include <syscalls/k_timer_start_mrsh.c>
|
|
#endif
|
|
|
|
void z_impl_k_timer_stop(struct k_timer *timer)
|
|
{
|
|
int inactive = z_abort_timeout(&timer->timeout) != 0;
|
|
|
|
if (inactive) {
|
|
return;
|
|
}
|
|
|
|
if (timer->stop_fn != NULL) {
|
|
timer->stop_fn(timer);
|
|
}
|
|
|
|
struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q);
|
|
|
|
if (pending_thread != NULL) {
|
|
z_ready_thread(pending_thread);
|
|
z_reschedule_unlocked();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_timer_stop(struct k_timer *timer)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
|
|
z_impl_k_timer_stop(timer);
|
|
}
|
|
#include <syscalls/k_timer_stop_mrsh.c>
|
|
#endif
|
|
|
|
u32_t z_impl_k_timer_status_get(struct k_timer *timer)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
u32_t result = timer->status;
|
|
|
|
timer->status = 0U;
|
|
k_spin_unlock(&lock, key);
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline u32_t z_vrfy_k_timer_status_get(struct k_timer *timer)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
|
|
return z_impl_k_timer_status_get(timer);
|
|
}
|
|
#include <syscalls/k_timer_status_get_mrsh.c>
|
|
#endif
|
|
|
|
u32_t z_impl_k_timer_status_sync(struct k_timer *timer)
|
|
{
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
u32_t result = timer->status;
|
|
|
|
if (result == 0U) {
|
|
if (!z_is_inactive_timeout(&timer->timeout)) {
|
|
/* wait for timer to expire or stop */
|
|
(void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER);
|
|
|
|
/* get updated timer status */
|
|
key = k_spin_lock(&lock);
|
|
result = timer->status;
|
|
} else {
|
|
/* timer is already stopped */
|
|
}
|
|
} else {
|
|
/* timer has already expired at least once */
|
|
}
|
|
|
|
timer->status = 0U;
|
|
k_spin_unlock(&lock, key);
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline u32_t z_vrfy_k_timer_status_sync(struct k_timer *timer)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
|
|
return z_impl_k_timer_status_sync(timer);
|
|
}
|
|
#include <syscalls/k_timer_status_sync_mrsh.c>
|
|
|
|
static inline u32_t z_vrfy_k_timer_remaining_get(struct k_timer *timer)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
|
|
return z_impl_k_timer_remaining_get(timer);
|
|
}
|
|
#include <syscalls/k_timer_remaining_get_mrsh.c>
|
|
|
|
static inline void *z_vrfy_k_timer_user_data_get(struct k_timer *timer)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
|
|
return z_impl_k_timer_user_data_get(timer);
|
|
}
|
|
#include <syscalls/k_timer_user_data_get_mrsh.c>
|
|
|
|
static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer,
|
|
void *user_data)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER));
|
|
z_impl_k_timer_user_data_set(timer, user_data);
|
|
}
|
|
#include <syscalls/k_timer_user_data_set_mrsh.c>
|
|
|
|
#endif
|