d2c101d466
Some platforms already have .bss section zeroed-out externally before the Zephyr initialization and there is no sence to zero it out the second time from the SW. Such boot-time optimization could be critical e.g. for RTL Simulation. Signed-off-by: Alexander Razinkov <alexander.razinkov@syntacore.com>
664 lines
17 KiB
C
664 lines
17 KiB
C
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Kernel initialization module
|
|
*
|
|
* This module contains routines that are used to initialize the kernel.
|
|
*/
|
|
|
|
#include <offsets_short.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/sys/printk.h>
|
|
#include <zephyr/debug/stack.h>
|
|
#include <zephyr/random/random.h>
|
|
#include <zephyr/linker/sections.h>
|
|
#include <zephyr/toolchain.h>
|
|
#include <zephyr/kernel_structs.h>
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/linker/linker-defs.h>
|
|
#include <ksched.h>
|
|
#include <string.h>
|
|
#include <zephyr/sys/dlist.h>
|
|
#include <kernel_internal.h>
|
|
#include <zephyr/drivers/entropy.h>
|
|
#include <zephyr/logging/log_ctrl.h>
|
|
#include <zephyr/tracing/tracing.h>
|
|
#include <stdbool.h>
|
|
#include <zephyr/debug/gcov.h>
|
|
#include <kswap.h>
|
|
#include <zephyr/timing/timing.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/pm/device_runtime.h>
|
|
LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
BUILD_ASSERT(CONFIG_MP_NUM_CPUS == CONFIG_MP_MAX_NUM_CPUS,
|
|
"CONFIG_MP_NUM_CPUS and CONFIG_MP_MAX_NUM_CPUS need to be set the same");
|
|
|
|
/* the only struct z_kernel instance */
|
|
__pinned_bss
|
|
struct z_kernel _kernel;
|
|
|
|
__pinned_bss
|
|
atomic_t _cpus_active;
|
|
|
|
/* init/main and idle threads */
|
|
K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
|
|
struct k_thread z_main_thread;
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
__pinned_bss
|
|
struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
|
|
|
|
static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks,
|
|
CONFIG_MP_MAX_NUM_CPUS,
|
|
CONFIG_IDLE_STACK_SIZE);
|
|
#endif /* CONFIG_MULTITHREADING */
|
|
|
|
extern const struct init_entry __init_start[];
|
|
extern const struct init_entry __init_EARLY_start[];
|
|
extern const struct init_entry __init_PRE_KERNEL_1_start[];
|
|
extern const struct init_entry __init_PRE_KERNEL_2_start[];
|
|
extern const struct init_entry __init_POST_KERNEL_start[];
|
|
extern const struct init_entry __init_APPLICATION_start[];
|
|
extern const struct init_entry __init_end[];
|
|
|
|
enum init_level {
|
|
INIT_LEVEL_EARLY = 0,
|
|
INIT_LEVEL_PRE_KERNEL_1,
|
|
INIT_LEVEL_PRE_KERNEL_2,
|
|
INIT_LEVEL_POST_KERNEL,
|
|
INIT_LEVEL_APPLICATION,
|
|
#ifdef CONFIG_SMP
|
|
INIT_LEVEL_SMP,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern const struct init_entry __init_SMP_start[];
|
|
#endif
|
|
|
|
/*
|
|
* storage space for the interrupt stack
|
|
*
|
|
* Note: This area is used as the system stack during kernel initialization,
|
|
* since the kernel hasn't yet set up its own stack areas. The dual purposing
|
|
* of this area is safe since interrupts are disabled until the kernel context
|
|
* switches to the init thread.
|
|
*/
|
|
K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks,
|
|
CONFIG_MP_MAX_NUM_CPUS,
|
|
CONFIG_ISR_STACK_SIZE);
|
|
|
|
extern void idle(void *unused1, void *unused2, void *unused3);
|
|
|
|
#ifdef CONFIG_OBJ_CORE_SYSTEM
|
|
static struct k_obj_type obj_type_cpu;
|
|
static struct k_obj_type obj_type_kernel;
|
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
|
|
static struct k_obj_core_stats_desc cpu_stats_desc = {
|
|
.raw_size = sizeof(struct k_cycle_stats),
|
|
.query_size = sizeof(struct k_thread_runtime_stats),
|
|
.raw = z_cpu_stats_raw,
|
|
.query = z_cpu_stats_query,
|
|
.reset = NULL,
|
|
.disable = NULL,
|
|
.enable = NULL,
|
|
};
|
|
|
|
static struct k_obj_core_stats_desc kernel_stats_desc = {
|
|
.raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS,
|
|
.query_size = sizeof(struct k_thread_runtime_stats),
|
|
.raw = z_kernel_stats_raw,
|
|
.query = z_kernel_stats_query,
|
|
.reset = NULL,
|
|
.disable = NULL,
|
|
.enable = NULL,
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
/* LCOV_EXCL_START
|
|
*
|
|
* This code is called so early in the boot process that code coverage
|
|
* doesn't work properly. In addition, not all arches call this code,
|
|
* some like x86 do this with optimized assembly
|
|
*/
|
|
|
|
/**
|
|
* @brief equivalent of memset() for early boot usage
|
|
*
|
|
* Architectures that can't safely use the regular (optimized) memset very
|
|
* early during boot because e.g. hardware isn't yet sufficiently initialized
|
|
* may override this with their own safe implementation.
|
|
*/
|
|
__boot_func
|
|
void __weak z_early_memset(void *dst, int c, size_t n)
|
|
{
|
|
(void) memset(dst, c, n);
|
|
}
|
|
|
|
/**
|
|
* @brief equivalent of memcpy() for early boot usage
|
|
*
|
|
* Architectures that can't safely use the regular (optimized) memcpy very
|
|
* early during boot because e.g. hardware isn't yet sufficiently initialized
|
|
* may override this with their own safe implementation.
|
|
*/
|
|
__boot_func
|
|
void __weak z_early_memcpy(void *dst, const void *src, size_t n)
|
|
{
|
|
(void) memcpy(dst, src, n);
|
|
}
|
|
|
|
/**
|
|
* @brief Clear BSS
|
|
*
|
|
* This routine clears the BSS region, so all bytes are 0.
|
|
*/
|
|
__boot_func
|
|
void z_bss_zero(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) {
|
|
return;
|
|
}
|
|
|
|
z_early_memset(__bss_start, 0, __bss_end - __bss_start);
|
|
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay)
|
|
z_early_memset(&__ccm_bss_start, 0,
|
|
(uintptr_t) &__ccm_bss_end
|
|
- (uintptr_t) &__ccm_bss_start);
|
|
#endif
|
|
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
|
|
z_early_memset(&__dtcm_bss_start, 0,
|
|
(uintptr_t) &__dtcm_bss_end
|
|
- (uintptr_t) &__dtcm_bss_start);
|
|
#endif
|
|
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ocm), okay)
|
|
z_early_memset(&__ocm_bss_start, 0,
|
|
(uintptr_t) &__ocm_bss_end
|
|
- (uintptr_t) &__ocm_bss_start);
|
|
#endif
|
|
#ifdef CONFIG_CODE_DATA_RELOCATION
|
|
extern void bss_zeroing_relocation(void);
|
|
|
|
bss_zeroing_relocation();
|
|
#endif /* CONFIG_CODE_DATA_RELOCATION */
|
|
#ifdef CONFIG_COVERAGE_GCOV
|
|
z_early_memset(&__gcov_bss_start, 0,
|
|
((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start));
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
|
|
/**
|
|
* @brief Clear BSS within the bot region
|
|
*
|
|
* This routine clears the BSS within the boot region.
|
|
* This is separate from z_bss_zero() as boot region may
|
|
* contain symbols required for the boot process before
|
|
* paging is initialized.
|
|
*/
|
|
__boot_func
|
|
void z_bss_zero_boot(void)
|
|
{
|
|
z_early_memset(&lnkr_boot_bss_start, 0,
|
|
(uintptr_t)&lnkr_boot_bss_end
|
|
- (uintptr_t)&lnkr_boot_bss_start);
|
|
}
|
|
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
|
|
|
|
#ifdef CONFIG_LINKER_USE_PINNED_SECTION
|
|
/**
|
|
* @brief Clear BSS within the pinned region
|
|
*
|
|
* This routine clears the BSS within the pinned region.
|
|
* This is separate from z_bss_zero() as pinned region may
|
|
* contain symbols required for the boot process before
|
|
* paging is initialized.
|
|
*/
|
|
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
|
|
__boot_func
|
|
#else
|
|
__pinned_func
|
|
#endif
|
|
void z_bss_zero_pinned(void)
|
|
{
|
|
z_early_memset(&lnkr_pinned_bss_start, 0,
|
|
(uintptr_t)&lnkr_pinned_bss_end
|
|
- (uintptr_t)&lnkr_pinned_bss_start);
|
|
}
|
|
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */
|
|
|
|
#ifdef CONFIG_STACK_CANARIES
|
|
#ifdef CONFIG_STACK_CANARIES_TLS
|
|
extern __thread volatile uintptr_t __stack_chk_guard;
|
|
#else
|
|
extern volatile uintptr_t __stack_chk_guard;
|
|
#endif
|
|
#endif /* CONFIG_STACK_CANARIES */
|
|
|
|
/* LCOV_EXCL_STOP */
|
|
|
|
__pinned_bss
|
|
bool z_sys_post_kernel;
|
|
|
|
/**
|
|
* @brief Execute all the init entry initialization functions at a given level
|
|
*
|
|
* @details Invokes the initialization routine for each init entry object
|
|
* created by the INIT_ENTRY_DEFINE() macro using the specified level.
|
|
* The linker script places the init entry objects in memory in the order
|
|
* they need to be invoked, with symbols indicating where one level leaves
|
|
* off and the next one begins.
|
|
*
|
|
* @param level init level to run.
|
|
*/
|
|
static void z_sys_init_run_level(enum init_level level)
|
|
{
|
|
static const struct init_entry *levels[] = {
|
|
__init_EARLY_start,
|
|
__init_PRE_KERNEL_1_start,
|
|
__init_PRE_KERNEL_2_start,
|
|
__init_POST_KERNEL_start,
|
|
__init_APPLICATION_start,
|
|
#ifdef CONFIG_SMP
|
|
__init_SMP_start,
|
|
#endif
|
|
/* End marker */
|
|
__init_end,
|
|
};
|
|
const struct init_entry *entry;
|
|
|
|
for (entry = levels[level]; entry < levels[level+1]; entry++) {
|
|
const struct device *dev = entry->dev;
|
|
|
|
if (dev != NULL) {
|
|
int rc = 0;
|
|
|
|
if (entry->init_fn.dev != NULL) {
|
|
rc = entry->init_fn.dev(dev);
|
|
/* Mark device initialized. If initialization
|
|
* failed, record the error condition.
|
|
*/
|
|
if (rc != 0) {
|
|
if (rc < 0) {
|
|
rc = -rc;
|
|
}
|
|
if (rc > UINT8_MAX) {
|
|
rc = UINT8_MAX;
|
|
}
|
|
dev->state->init_res = rc;
|
|
}
|
|
}
|
|
|
|
dev->state->initialized = true;
|
|
|
|
if (rc == 0) {
|
|
/* Run automatic device runtime enablement */
|
|
(void)pm_device_runtime_auto_enable(dev);
|
|
}
|
|
} else {
|
|
(void)entry->init_fn.sys();
|
|
}
|
|
}
|
|
}
|
|
|
|
extern void boot_banner(void);
|
|
|
|
/**
|
|
* @brief Mainline for kernel's background thread
|
|
*
|
|
* This routine completes kernel initialization by invoking the remaining
|
|
* init functions, then invokes application's main() routine.
|
|
*/
|
|
__boot_func
|
|
static void bg_thread_main(void *unused1, void *unused2, void *unused3)
|
|
{
|
|
ARG_UNUSED(unused1);
|
|
ARG_UNUSED(unused2);
|
|
ARG_UNUSED(unused3);
|
|
|
|
#ifdef CONFIG_MMU
|
|
/* Invoked here such that backing store or eviction algorithms may
|
|
* initialize kernel objects, and that all POST_KERNEL and later tasks
|
|
* may perform memory management tasks (except for z_phys_map() which
|
|
* is allowed at any time)
|
|
*/
|
|
z_mem_manage_init();
|
|
#endif /* CONFIG_MMU */
|
|
z_sys_post_kernel = true;
|
|
|
|
z_sys_init_run_level(INIT_LEVEL_POST_KERNEL);
|
|
#if CONFIG_STACK_POINTER_RANDOM
|
|
z_stack_adjust_initialized = 1;
|
|
#endif
|
|
boot_banner();
|
|
|
|
#if defined(CONFIG_CPP)
|
|
void z_cpp_init_static(void);
|
|
z_cpp_init_static();
|
|
#endif
|
|
|
|
/* Final init level before app starts */
|
|
z_sys_init_run_level(INIT_LEVEL_APPLICATION);
|
|
|
|
z_init_static_threads();
|
|
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT_NO_MSG(arch_mem_coherent(&_kernel));
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) {
|
|
z_smp_init();
|
|
}
|
|
z_sys_init_run_level(INIT_LEVEL_SMP);
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMU
|
|
z_mem_manage_boot_finish();
|
|
#endif /* CONFIG_MMU */
|
|
|
|
extern int main(void);
|
|
|
|
(void)main();
|
|
|
|
/* Mark nonessential since main() has no more work to do */
|
|
z_main_thread.base.user_options &= ~K_ESSENTIAL;
|
|
|
|
#ifdef CONFIG_COVERAGE_DUMP
|
|
/* Dump coverage data once the main() has exited. */
|
|
gcov_coverage_dump();
|
|
#endif
|
|
} /* LCOV_EXCL_LINE ... because we just dumped final coverage data */
|
|
|
|
#if defined(CONFIG_MULTITHREADING)
|
|
__boot_func
|
|
static void init_idle_thread(int i)
|
|
{
|
|
struct k_thread *thread = &z_idle_threads[i];
|
|
k_thread_stack_t *stack = z_idle_stacks[i];
|
|
|
|
#ifdef CONFIG_THREAD_NAME
|
|
|
|
#if CONFIG_MP_MAX_NUM_CPUS > 1
|
|
char tname[8];
|
|
snprintk(tname, 8, "idle %02d", i);
|
|
#else
|
|
char *tname = "idle";
|
|
#endif
|
|
|
|
#else
|
|
char *tname = NULL;
|
|
#endif /* CONFIG_THREAD_NAME */
|
|
|
|
z_setup_new_thread(thread, stack,
|
|
CONFIG_IDLE_STACK_SIZE, idle, &_kernel.cpus[i],
|
|
NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL,
|
|
tname);
|
|
z_mark_thread_as_started(thread);
|
|
|
|
#ifdef CONFIG_SMP
|
|
thread->base.is_idle = 1U;
|
|
#endif
|
|
}
|
|
|
|
void z_init_cpu(int id)
|
|
{
|
|
init_idle_thread(id);
|
|
_kernel.cpus[id].idle_thread = &z_idle_threads[id];
|
|
_kernel.cpus[id].id = id;
|
|
_kernel.cpus[id].irq_stack =
|
|
(Z_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) +
|
|
K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id]));
|
|
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
|
|
_kernel.cpus[id].usage = &_kernel.usage[id];
|
|
_kernel.cpus[id].usage->track_usage =
|
|
CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
|
|
#endif
|
|
|
|
/*
|
|
* Increment number of CPUs active. The pm subsystem
|
|
* will keep track of this from here.
|
|
*/
|
|
atomic_inc(&_cpus_active);
|
|
|
|
#ifdef CONFIG_OBJ_CORE_SYSTEM
|
|
k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu);
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
|
|
k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]),
|
|
_kernel.cpus[id].usage,
|
|
sizeof(struct k_cycle_stats));
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Initializes kernel data structures
|
|
*
|
|
* This routine initializes various kernel data structures, including
|
|
* the init and idle threads and any architecture-specific initialization.
|
|
*
|
|
* Note that all fields of "_kernel" are set to zero on entry, which may
|
|
* be all the initialization many of them require.
|
|
*
|
|
* @return initial stack pointer for the main thread
|
|
*/
|
|
__boot_func
|
|
static char *prepare_multithreading(void)
|
|
{
|
|
char *stack_ptr;
|
|
|
|
/* _kernel.ready_q is all zeroes */
|
|
z_sched_init();
|
|
|
|
#ifndef CONFIG_SMP
|
|
/*
|
|
* prime the cache with the main thread since:
|
|
*
|
|
* - the cache can never be NULL
|
|
* - the main thread will be the one to run first
|
|
* - no other thread is initialized yet and thus their priority fields
|
|
* contain garbage, which would prevent the cache loading algorithm
|
|
* to work as intended
|
|
*/
|
|
_kernel.ready_q.cache = &z_main_thread;
|
|
#endif
|
|
stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
|
|
CONFIG_MAIN_STACK_SIZE, bg_thread_main,
|
|
NULL, NULL, NULL,
|
|
CONFIG_MAIN_THREAD_PRIORITY,
|
|
K_ESSENTIAL, "main");
|
|
z_mark_thread_as_started(&z_main_thread);
|
|
z_ready_thread(&z_main_thread);
|
|
|
|
z_init_cpu(0);
|
|
|
|
return stack_ptr;
|
|
}
|
|
|
|
__boot_func
|
|
static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
|
|
{
|
|
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
|
|
arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
|
|
#else
|
|
ARG_UNUSED(stack_ptr);
|
|
/*
|
|
* Context switch to main task (entry function is _main()): the
|
|
* current fake thread is not on a wait queue or ready queue, so it
|
|
* will never be rescheduled in.
|
|
*/
|
|
z_swap_unlocked();
|
|
#endif
|
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
|
|
}
|
|
#endif /* CONFIG_MULTITHREADING */
|
|
|
|
__boot_func
|
|
void __weak z_early_rand_get(uint8_t *buf, size_t length)
|
|
{
|
|
static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE;
|
|
int rc;
|
|
|
|
#ifdef CONFIG_ENTROPY_HAS_DRIVER
|
|
const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy));
|
|
|
|
if ((entropy != NULL) && device_is_ready(entropy)) {
|
|
/* Try to see if driver provides an ISR-specific API */
|
|
rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
|
|
if (rc > 0) {
|
|
length -= rc;
|
|
buf += rc;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
while (length > 0) {
|
|
uint32_t val;
|
|
|
|
state = state + k_cycle_get_32();
|
|
state = state * 2862933555777941757ULL + 3037000493ULL;
|
|
val = (uint32_t)(state >> 32);
|
|
rc = MIN(length, sizeof(val));
|
|
z_early_memcpy((void *)buf, &val, rc);
|
|
|
|
length -= rc;
|
|
buf += rc;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize kernel
|
|
*
|
|
* This routine is invoked when the system is ready to run C code. The
|
|
* processor must be running in 32-bit mode, and the BSS must have been
|
|
* cleared/zeroed.
|
|
*
|
|
* @return Does not return
|
|
*/
|
|
__boot_func
|
|
FUNC_NO_STACK_PROTECTOR
|
|
FUNC_NORETURN void z_cstart(void)
|
|
{
|
|
/* gcov hook needed to get the coverage report.*/
|
|
gcov_static_init();
|
|
|
|
/* initialize early init calls */
|
|
z_sys_init_run_level(INIT_LEVEL_EARLY);
|
|
|
|
/* perform any architecture-specific initialization */
|
|
arch_kernel_init();
|
|
|
|
LOG_CORE_INIT();
|
|
|
|
#if defined(CONFIG_MULTITHREADING)
|
|
/* Note: The z_ready_thread() call in prepare_multithreading() requires
|
|
* a dummy thread even if CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN=y
|
|
*/
|
|
struct k_thread dummy_thread;
|
|
|
|
z_dummy_thread_init(&dummy_thread);
|
|
#endif
|
|
/* do any necessary initialization of static devices */
|
|
z_device_state_init();
|
|
|
|
/* perform basic hardware initialization */
|
|
z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1);
|
|
z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2);
|
|
|
|
#ifdef CONFIG_STACK_CANARIES
|
|
uintptr_t stack_guard;
|
|
|
|
z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
|
|
__stack_chk_guard = stack_guard;
|
|
__stack_chk_guard <<= 8;
|
|
#endif /* CONFIG_STACK_CANARIES */
|
|
|
|
#ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT
|
|
timing_init();
|
|
timing_start();
|
|
#endif
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
switch_to_main_thread(prepare_multithreading());
|
|
#else
|
|
#ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
|
|
/* Custom ARCH-specific routine to switch to main()
|
|
* in the case of no multi-threading.
|
|
*/
|
|
ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
|
|
NULL, NULL, NULL);
|
|
#else
|
|
bg_thread_main(NULL, NULL, NULL);
|
|
|
|
/* LCOV_EXCL_START
|
|
* We've already dumped coverage data at this point.
|
|
*/
|
|
irq_lock();
|
|
while (true) {
|
|
}
|
|
/* LCOV_EXCL_STOP */
|
|
#endif
|
|
#endif /* CONFIG_MULTITHREADING */
|
|
|
|
/*
|
|
* Compiler can't tell that the above routines won't return and issues
|
|
* a warning unless we explicitly tell it that control never gets this
|
|
* far.
|
|
*/
|
|
|
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
|
|
}
|
|
|
|
#ifdef CONFIG_OBJ_CORE_SYSTEM
|
|
static int init_cpu_obj_core_list(void)
|
|
{
|
|
/* Initialize CPU object type */
|
|
|
|
z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID,
|
|
offsetof(struct _cpu, obj_core));
|
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
|
|
k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_kernel_obj_core_list(void)
|
|
{
|
|
/* Initialize kernel object type */
|
|
|
|
z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID,
|
|
offsetof(struct z_kernel, obj_core));
|
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
|
|
k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc);
|
|
#endif
|
|
|
|
k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel);
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
|
|
k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage,
|
|
sizeof(_kernel.usage));
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1,
|
|
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1,
|
|
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
#endif
|