zephyr/kernel/include/kernel_internal.h
Daniel Leung 2cdd44801e kernel: move z_init_cpu to private kernel headers
z_init_cpu() is a private kernel API so move it under
kernel/include.

Signed-off-by: Daniel Leung <daniel.leung@intel.com>
2024-01-17 11:57:20 -05:00

321 lines
9.1 KiB
C

/*
* Copyright (c) 2010-2012, 2014-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Architecture-independent private kernel APIs
*
* This file contains private kernel APIs that are not architecture-specific.
*/
#ifndef ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_
#define ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_
#include <zephyr/kernel.h>
#include <kernel_arch_interface.h>
#include <string.h>
#ifndef _ASMLANGUAGE
#ifdef __cplusplus
extern "C" {
#endif
/* Initialize per-CPU kernel data */
void z_init_cpu(int id);
/* Initialize a thread */
void z_init_thread_base(struct _thread_base *thread_base, int priority,
uint32_t initial_state, unsigned int options);
/* Early boot functions */
void z_early_memset(void *dst, int c, size_t n);
void z_early_memcpy(void *dst, const void *src, size_t n);
void z_bss_zero(void);
#ifdef CONFIG_XIP
void z_data_copy(void);
#else
static inline void z_data_copy(void)
{
/* Do nothing */
}
#endif
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
void z_bss_zero_boot(void);
#else
static inline void z_bss_zero_boot(void)
{
/* Do nothing */
}
#endif
#ifdef CONFIG_LINKER_USE_PINNED_SECTION
void z_bss_zero_pinned(void);
#else
static inline void z_bss_zero_pinned(void)
{
/* Do nothing */
}
#endif
FUNC_NORETURN void z_cstart(void);
void z_device_state_init(void);
extern FUNC_NORETURN void z_thread_entry(k_thread_entry_t entry,
void *p1, void *p2, void *p3);
extern char *z_setup_new_thread(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, uint32_t options, const char *name);
/**
* @brief Allocate aligned memory from the current thread's resource pool
*
* Threads may be assigned a resource pool, which will be used to allocate
* memory on behalf of certain kernel and driver APIs. Memory reserved
* in this way should be freed with k_free().
*
* If called from an ISR, the k_malloc() system heap will be used if it exists.
*
* @param align Required memory alignment
* @param size Memory allocation size
* @return A pointer to the allocated memory, or NULL if there is insufficient
* RAM in the pool or there is no pool to draw memory from
*/
void *z_thread_aligned_alloc(size_t align, size_t size);
/**
* @brief Allocate some memory from the current thread's resource pool
*
* Threads may be assigned a resource pool, which will be used to allocate
* memory on behalf of certain kernel and driver APIs. Memory reserved
* in this way should be freed with k_free().
*
* If called from an ISR, the k_malloc() system heap will be used if it exists.
*
* @param size Memory allocation size
* @return A pointer to the allocated memory, or NULL if there is insufficient
* RAM in the pool or there is no pool to draw memory from
*/
static inline void *z_thread_malloc(size_t size)
{
return z_thread_aligned_alloc(0, size);
}
/* set and clear essential thread flag */
extern void z_thread_essential_set(void);
extern void z_thread_essential_clear(void);
/* clean up when a thread is aborted */
#if defined(CONFIG_THREAD_MONITOR)
extern void z_thread_monitor_exit(struct k_thread *thread);
#else
#define z_thread_monitor_exit(thread) \
do {/* nothing */ \
} while (false)
#endif /* CONFIG_THREAD_MONITOR */
#ifdef CONFIG_USE_SWITCH
/* This is a arch function traditionally, but when the switch-based
* z_swap() is in use it's a simple inline provided by the kernel.
*/
static ALWAYS_INLINE void
arch_thread_return_value_set(struct k_thread *thread, unsigned int value)
{
thread->swap_retval = value;
}
#endif
static ALWAYS_INLINE void
z_thread_return_value_set_with_data(struct k_thread *thread,
unsigned int value,
void *data)
{
arch_thread_return_value_set(thread, value);
thread->base.swap_data = data;
}
#ifdef CONFIG_SMP
extern void z_smp_init(void);
#ifdef CONFIG_SYS_CLOCK_EXISTS
extern void smp_timer_init(void);
#endif
#endif
extern void z_early_rand_get(uint8_t *buf, size_t length);
#if CONFIG_STACK_POINTER_RANDOM
extern int z_stack_adjust_initialized;
#endif
extern struct k_thread z_main_thread;
#ifdef CONFIG_MULTITHREADING
extern struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
#endif
K_KERNEL_PINNED_STACK_ARRAY_DECLARE(z_interrupt_stacks, CONFIG_MP_MAX_NUM_CPUS,
CONFIG_ISR_STACK_SIZE);
#ifdef CONFIG_GEN_PRIV_STACKS
extern uint8_t *z_priv_stack_find(k_thread_stack_t *stack);
#endif
/* Calculate stack usage. */
int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr);
#ifdef CONFIG_USERSPACE
bool z_stack_is_user_capable(k_thread_stack_t *stack);
/* Memory domain setup hook, called from z_setup_new_thread() */
void z_mem_domain_init_thread(struct k_thread *thread);
/* Memory domain teardown hook, called from z_thread_abort() */
void z_mem_domain_exit_thread(struct k_thread *thread);
/* This spinlock:
*
* - Protects the full set of active k_mem_domain objects and their contents
* - Serializes calls to arch_mem_domain_* APIs
*
* If architecture code needs to access k_mem_domain structures or the
* partitions they contain at any other point, this spinlock should be held.
* Uniprocessor systems can get away with just locking interrupts but this is
* not recommended.
*/
extern struct k_spinlock z_mem_domain_lock;
#endif /* CONFIG_USERSPACE */
#ifdef CONFIG_GDBSTUB
struct gdb_ctx;
/* Should be called by the arch layer. This is the gdbstub main loop
* and synchronously communicate with gdb on host.
*/
extern int z_gdb_main_loop(struct gdb_ctx *ctx);
#endif
#ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
void z_thread_mark_switched_in(void);
void z_thread_mark_switched_out(void);
#else
/**
* @brief Called after a thread has been selected to run
*/
#define z_thread_mark_switched_in()
/**
* @brief Called before a thread has been selected to run
*/
#define z_thread_mark_switched_out()
#endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
/* Init hook for page frame management, invoked immediately upon entry of
* main thread, before POST_KERNEL tasks
*/
void z_mem_manage_init(void);
/**
* @brief Finalize page frame management at the end of boot process.
*/
void z_mem_manage_boot_finish(void);
void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
#ifdef CONFIG_PM
/* When the kernel is about to go idle, it calls this function to notify the
* power management subsystem, that the kernel is ready to enter the idle state.
*
* At this point, the kernel has disabled interrupts and computed the maximum
* time the system can remain idle. The function passes the time that the system
* can remain idle. The SOC interface performs power operations that can be done
* in the available time. The power management operations must halt execution of
* the CPU.
*
* This function assumes that a wake up event has already been set up by the
* application.
*
* This function is entered with interrupts disabled. It should re-enable
* interrupts if it had entered a power state.
*
* @return True if the system suspended, otherwise return false
*/
bool pm_system_suspend(int32_t ticks);
/**
* Notify exit from kernel idling after PM operations
*
* This function would notify exit from kernel idling if a corresponding
* pm_system_suspend() notification was handled and did not return
* PM_STATE_ACTIVE.
*
* This function would be called from the ISR context of the event
* that caused the exit from kernel idling. This will be called immediately
* after interrupts are enabled. This is called to give a chance to do
* any operations before the kernel would switch tasks or processes nested
* interrupts. This is required for cpu low power states that would require
* interrupts to be enabled while entering low power states. e.g. C1 in x86. In
* those cases, the ISR would be invoked immediately after the event wakes up
* the CPU, before code following the CPU wait, gets a chance to execute. This
* can be ignored if no operation needs to be done at the wake event
* notification.
*/
void pm_system_resume(void);
#endif
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
/**
* Initialize the timing histograms for demand paging.
*/
void z_paging_histogram_init(void);
/**
* Increment the counter in the timing histogram.
*
* @param hist The timing histogram to be updated.
* @param cycles Time spent in measured operation.
*/
void z_paging_histogram_inc(struct k_mem_paging_histogram_t *hist,
uint32_t cycles);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
int z_thread_stats_raw(struct k_obj_core *obj_core, void *stats);
int z_thread_stats_query(struct k_obj_core *obj_core, void *stats);
int z_thread_stats_reset(struct k_obj_core *obj_core);
int z_thread_stats_disable(struct k_obj_core *obj_core);
int z_thread_stats_enable(struct k_obj_core *obj_core);
#endif
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
int z_cpu_stats_raw(struct k_obj_core *obj_core, void *stats);
int z_cpu_stats_query(struct k_obj_core *obj_core, void *stats);
int z_kernel_stats_raw(struct k_obj_core *obj_core, void *stats);
int z_kernel_stats_query(struct k_obj_core *obj_core, void *stats);
#endif
#ifdef __cplusplus
}
#endif
#endif /* _ASMLANGUAGE */
#endif /* ZEPHYR_KERNEL_INCLUDE_KERNEL_INTERNAL_H_ */