After a k_thread_abort(), the resulting thread struct is documented as
unused/free memory that may be re-used (for example, to respawn a new
thread).
But in the special case of aborting the current thread from within an
ISR, that wasn't quite happening. The scheduler cleanup would
complete, but the architecture layer would still try to context switch
away from the aborted thread on exit, and that can include writes to
the now-reused thread struct! The specifics will depend on
architecture (some do a full context save on entry, most don't), but
in the case of USE_SWITCH=y it will at the very least write the
switch_handle field.
Fix this simply, with a per-cpu "switch dummy" thread struct for use
as a target for context switches like this. There is some non-trivial
memory cost to that; thread structs on many architectures are large.
Pleasingly, this also addresses a known deadlock on SMP: because the
"spin in ISR" step now happens as the very last stage of
k_thread_abort() handling, the existing scheduler lock works to
serialize calls such that it's impossible for a cycle of threads to
independently decide to spin on each other: at least one will see
itself as "already aborting" and break the cycle.
Fixes#64646
Signed-off-by: Andy Ross <andyross@google.com>