ea26bcf8d3
This reverts commit 61c70626a5
.
This PR introduced 2 regressions in main CI:
71977 & 71978
Let's revert it by now to get main's CI passing again.
Signed-off-by: Alberto Escolar Piedras <alberto.escolar.piedras@nordicsemi.no>
1515 lines
39 KiB
C
1515 lines
39 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <zephyr/kernel.h>
|
|
#include <ksched.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <wait_q.h>
|
|
#include <kthread.h>
|
|
#include <priority_q.h>
|
|
#include <kswap.h>
|
|
#include <ipi.h>
|
|
#include <kernel_arch_func.h>
|
|
#include <zephyr/internal/syscall_handler.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <stdbool.h>
|
|
#include <kernel_internal.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/sys/atomic.h>
|
|
#include <zephyr/sys/math_extras.h>
|
|
#include <zephyr/timing/timing.h>
|
|
#include <zephyr/sys/util.h>
|
|
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_TIMESLICING)
|
|
extern struct k_thread *pending_current;
|
|
#endif
|
|
|
|
struct k_spinlock _sched_spinlock;
|
|
|
|
static void update_cache(int preempt_ok);
|
|
static void halt_thread(struct k_thread *thread, uint8_t new_state);
|
|
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q);
|
|
|
|
|
|
BUILD_ASSERT(CONFIG_NUM_COOP_PRIORITIES >= CONFIG_NUM_METAIRQ_PRIORITIES,
|
|
"You need to provide at least as many CONFIG_NUM_COOP_PRIORITIES as "
|
|
"CONFIG_NUM_METAIRQ_PRIORITIES as Meta IRQs are just a special class of cooperative "
|
|
"threads.");
|
|
|
|
/*
|
|
* Return value same as e.g. memcmp
|
|
* > 0 -> thread 1 priority > thread 2 priority
|
|
* = 0 -> thread 1 priority == thread 2 priority
|
|
* < 0 -> thread 1 priority < thread 2 priority
|
|
* Do not rely on the actual value returned aside from the above.
|
|
* (Again, like memcmp.)
|
|
*/
|
|
int32_t z_sched_prio_cmp(struct k_thread *thread_1,
|
|
struct k_thread *thread_2)
|
|
{
|
|
/* `prio` is <32b, so the below cannot overflow. */
|
|
int32_t b1 = thread_1->base.prio;
|
|
int32_t b2 = thread_2->base.prio;
|
|
|
|
if (b1 != b2) {
|
|
return b2 - b1;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
/* If we assume all deadlines live within the same "half" of
|
|
* the 32 bit modulus space (this is a documented API rule),
|
|
* then the latest deadline in the queue minus the earliest is
|
|
* guaranteed to be (2's complement) non-negative. We can
|
|
* leverage that to compare the values without having to check
|
|
* the current time.
|
|
*/
|
|
uint32_t d1 = thread_1->base.prio_deadline;
|
|
uint32_t d2 = thread_2->base.prio_deadline;
|
|
|
|
if (d1 != d2) {
|
|
/* Sooner deadline means higher effective priority.
|
|
* Doing the calculation with unsigned types and casting
|
|
* to signed isn't perfect, but at least reduces this
|
|
* from UB on overflow to impdef.
|
|
*/
|
|
return (int32_t) (d2 - d1);
|
|
}
|
|
#endif /* CONFIG_SCHED_DEADLINE */
|
|
return 0;
|
|
}
|
|
|
|
static ALWAYS_INLINE void *thread_runq(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
|
|
int cpu, m = thread->base.cpu_mask;
|
|
|
|
/* Edge case: it's legal per the API to "make runnable" a
|
|
* thread with all CPUs masked off (i.e. one that isn't
|
|
* actually runnable!). Sort of a wart in the API and maybe
|
|
* we should address this in docs/assertions instead to avoid
|
|
* the extra test.
|
|
*/
|
|
cpu = m == 0 ? 0 : u32_count_trailing_zeros(m);
|
|
|
|
return &_kernel.cpus[cpu].ready_q.runq;
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
return &_kernel.ready_q.runq;
|
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
|
|
}
|
|
|
|
static ALWAYS_INLINE void *curr_cpu_runq(void)
|
|
{
|
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
|
|
return &arch_curr_cpu()->ready_q.runq;
|
|
#else
|
|
return &_kernel.ready_q.runq;
|
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
|
|
}
|
|
|
|
static ALWAYS_INLINE void runq_add(struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
|
|
|
|
_priq_run_add(thread_runq(thread), thread);
|
|
}
|
|
|
|
static ALWAYS_INLINE void runq_remove(struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread));
|
|
|
|
_priq_run_remove(thread_runq(thread), thread);
|
|
}
|
|
|
|
static ALWAYS_INLINE struct k_thread *runq_best(void)
|
|
{
|
|
return _priq_run_best(curr_cpu_runq());
|
|
}
|
|
|
|
/* _current is never in the run queue until context switch on
|
|
* SMP configurations, see z_requeue_current()
|
|
*/
|
|
static inline bool should_queue_thread(struct k_thread *thread)
|
|
{
|
|
return !IS_ENABLED(CONFIG_SMP) || thread != _current;
|
|
}
|
|
|
|
static ALWAYS_INLINE void queue_thread(struct k_thread *thread)
|
|
{
|
|
thread->base.thread_state |= _THREAD_QUEUED;
|
|
if (should_queue_thread(thread)) {
|
|
runq_add(thread);
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
if (thread == _current) {
|
|
/* add current to end of queue means "yield" */
|
|
_current_cpu->swap_ok = true;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread)
|
|
{
|
|
thread->base.thread_state &= ~_THREAD_QUEUED;
|
|
if (should_queue_thread(thread)) {
|
|
runq_remove(thread);
|
|
}
|
|
}
|
|
|
|
/* Called out of z_swap() when CONFIG_SMP. The current thread can
|
|
* never live in the run queue until we are inexorably on the context
|
|
* switch path on SMP, otherwise there is a deadlock condition where a
|
|
* set of CPUs pick a cycle of threads to run and wait for them all to
|
|
* context switch forever.
|
|
*/
|
|
void z_requeue_current(struct k_thread *thread)
|
|
{
|
|
if (z_is_thread_queued(thread)) {
|
|
runq_add(thread);
|
|
}
|
|
signal_pending_ipi();
|
|
}
|
|
|
|
/* Return true if the thread is aborting, else false */
|
|
static inline bool is_aborting(struct k_thread *thread)
|
|
{
|
|
return (thread->base.thread_state & _THREAD_ABORTING) != 0U;
|
|
}
|
|
|
|
/* Return true if the thread is aborting or suspending, else false */
|
|
static inline bool is_halting(struct k_thread *thread)
|
|
{
|
|
return (thread->base.thread_state &
|
|
(_THREAD_ABORTING | _THREAD_SUSPENDING)) != 0U;
|
|
}
|
|
|
|
/* Clear the halting bits (_THREAD_ABORTING and _THREAD_SUSPENDING) */
|
|
static inline void clear_halting(struct k_thread *thread)
|
|
{
|
|
thread->base.thread_state &= ~(_THREAD_ABORTING | _THREAD_SUSPENDING);
|
|
}
|
|
|
|
static ALWAYS_INLINE struct k_thread *next_up(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (is_halting(_current)) {
|
|
halt_thread(_current, is_aborting(_current) ?
|
|
_THREAD_DEAD : _THREAD_SUSPENDED);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
struct k_thread *thread = runq_best();
|
|
|
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \
|
|
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES)
|
|
/* MetaIRQs must always attempt to return back to a
|
|
* cooperative thread they preempted and not whatever happens
|
|
* to be highest priority now. The cooperative thread was
|
|
* promised it wouldn't be preempted (by non-metairq threads)!
|
|
*/
|
|
struct k_thread *mirqp = _current_cpu->metairq_preempted;
|
|
|
|
if (mirqp != NULL && (thread == NULL || !thread_is_metairq(thread))) {
|
|
if (!z_is_thread_prevented_from_running(mirqp)) {
|
|
thread = mirqp;
|
|
} else {
|
|
_current_cpu->metairq_preempted = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 &&
|
|
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES
|
|
*/
|
|
|
|
#ifndef CONFIG_SMP
|
|
/* In uniprocessor mode, we can leave the current thread in
|
|
* the queue (actually we have to, otherwise the assembly
|
|
* context switch code for all architectures would be
|
|
* responsible for putting it back in z_swap and ISR return!),
|
|
* which makes this choice simple.
|
|
*/
|
|
return (thread != NULL) ? thread : _current_cpu->idle_thread;
|
|
#else
|
|
/* Under SMP, the "cache" mechanism for selecting the next
|
|
* thread doesn't work, so we have more work to do to test
|
|
* _current against the best choice from the queue. Here, the
|
|
* thread selected above represents "the best thread that is
|
|
* not current".
|
|
*
|
|
* Subtle note on "queued": in SMP mode, _current does not
|
|
* live in the queue, so this isn't exactly the same thing as
|
|
* "ready", it means "is _current already added back to the
|
|
* queue such that we don't want to re-add it".
|
|
*/
|
|
bool queued = z_is_thread_queued(_current);
|
|
bool active = !z_is_thread_prevented_from_running(_current);
|
|
|
|
if (thread == NULL) {
|
|
thread = _current_cpu->idle_thread;
|
|
}
|
|
|
|
if (active) {
|
|
int32_t cmp = z_sched_prio_cmp(_current, thread);
|
|
|
|
/* Ties only switch if state says we yielded */
|
|
if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) {
|
|
thread = _current;
|
|
}
|
|
|
|
if (!should_preempt(thread, _current_cpu->swap_ok)) {
|
|
thread = _current;
|
|
}
|
|
}
|
|
|
|
/* Put _current back into the queue */
|
|
if (thread != _current && active &&
|
|
!z_is_idle_thread_object(_current) && !queued) {
|
|
queue_thread(_current);
|
|
}
|
|
|
|
/* Take the new _current out of the queue */
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
|
|
_current_cpu->swap_ok = false;
|
|
return thread;
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
void move_thread_to_end_of_prio_q(struct k_thread *thread)
|
|
{
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
queue_thread(thread);
|
|
update_cache(thread == _current);
|
|
}
|
|
|
|
/* Track cooperative threads preempted by metairqs so we can return to
|
|
* them specifically. Called at the moment a new thread has been
|
|
* selected to run.
|
|
*/
|
|
static void update_metairq_preempt(struct k_thread *thread)
|
|
{
|
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \
|
|
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES)
|
|
if (thread_is_metairq(thread) && !thread_is_metairq(_current) &&
|
|
!thread_is_preemptible(_current)) {
|
|
/* Record new preemption */
|
|
_current_cpu->metairq_preempted = _current;
|
|
} else if (!thread_is_metairq(thread) && !z_is_idle_thread_object(thread)) {
|
|
/* Returning from existing preemption */
|
|
_current_cpu->metairq_preempted = NULL;
|
|
}
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
#endif
|
|
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 &&
|
|
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES
|
|
*/
|
|
}
|
|
|
|
static void update_cache(int preempt_ok)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
struct k_thread *thread = next_up();
|
|
|
|
if (should_preempt(thread, preempt_ok)) {
|
|
#ifdef CONFIG_TIMESLICING
|
|
if (thread != _current) {
|
|
z_reset_time_slice(thread);
|
|
}
|
|
#endif /* CONFIG_TIMESLICING */
|
|
update_metairq_preempt(thread);
|
|
_kernel.ready_q.cache = thread;
|
|
} else {
|
|
_kernel.ready_q.cache = _current;
|
|
}
|
|
|
|
#else
|
|
/* The way this works is that the CPU record keeps its
|
|
* "cooperative swapping is OK" flag until the next reschedule
|
|
* call or context switch. It doesn't need to be tracked per
|
|
* thread because if the thread gets preempted for whatever
|
|
* reason the scheduler will make the same decision anyway.
|
|
*/
|
|
_current_cpu->swap_ok = preempt_ok;
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
static bool thread_active_elsewhere(struct k_thread *thread)
|
|
{
|
|
/* True if the thread is currently running on another CPU.
|
|
* There are more scalable designs to answer this question in
|
|
* constant time, but this is fine for now.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
int currcpu = _current_cpu->id;
|
|
|
|
unsigned int num_cpus = arch_num_cpus();
|
|
|
|
for (int i = 0; i < num_cpus; i++) {
|
|
if ((i != currcpu) &&
|
|
(_kernel.cpus[i].current == thread)) {
|
|
return true;
|
|
}
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
ARG_UNUSED(thread);
|
|
return false;
|
|
}
|
|
|
|
static void ready_thread(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT_NO_MSG(arch_mem_coherent(thread));
|
|
#endif /* CONFIG_KERNEL_COHERENCE */
|
|
|
|
/* If thread is queued already, do not try and added it to the
|
|
* run queue again
|
|
*/
|
|
if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) {
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread);
|
|
|
|
queue_thread(thread);
|
|
update_cache(0);
|
|
flag_ipi();
|
|
}
|
|
}
|
|
|
|
void z_ready_thread_locked(struct k_thread *thread)
|
|
{
|
|
if (!thread_active_elsewhere(thread)) {
|
|
ready_thread(thread);
|
|
}
|
|
}
|
|
|
|
void z_ready_thread(struct k_thread *thread)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
if (!thread_active_elsewhere(thread)) {
|
|
ready_thread(thread);
|
|
}
|
|
}
|
|
}
|
|
|
|
void z_move_thread_to_end_of_prio_q(struct k_thread *thread)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
move_thread_to_end_of_prio_q(thread);
|
|
}
|
|
}
|
|
|
|
void z_sched_start(struct k_thread *thread)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
|
|
if (z_has_thread_started(thread)) {
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
return;
|
|
}
|
|
|
|
z_mark_thread_as_started(thread);
|
|
ready_thread(thread);
|
|
z_reschedule(&_sched_spinlock, key);
|
|
}
|
|
|
|
/* Spins in ISR context, waiting for a thread known to be running on
|
|
* another CPU to catch the IPI we sent and halt. Note that we check
|
|
* for ourselves being asynchronously halted first to prevent simple
|
|
* deadlocks (but not complex ones involving cycles of 3+ threads!).
|
|
*/
|
|
static k_spinlock_key_t thread_halt_spin(struct k_thread *thread, k_spinlock_key_t key)
|
|
{
|
|
if (is_halting(_current)) {
|
|
halt_thread(_current,
|
|
is_aborting(_current) ? _THREAD_DEAD : _THREAD_SUSPENDED);
|
|
}
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
while (is_halting(thread)) {
|
|
}
|
|
key = k_spin_lock(&_sched_spinlock);
|
|
z_sched_switch_spin(thread);
|
|
return key;
|
|
}
|
|
|
|
/* Shared handler for k_thread_{suspend,abort}(). Called with the
|
|
* scheduler lock held and the key passed (which it may
|
|
* release/reacquire!) which will be released before a possible return
|
|
* (aborting _current will not return, obviously), which may be after
|
|
* a context switch.
|
|
*/
|
|
static void z_thread_halt(struct k_thread *thread, k_spinlock_key_t key,
|
|
bool terminate)
|
|
{
|
|
_wait_q_t *wq = &thread->join_queue;
|
|
#ifdef CONFIG_SMP
|
|
wq = terminate ? wq : &thread->halt_queue;
|
|
#endif
|
|
|
|
/* If the target is a thread running on another CPU, flag and
|
|
* poke (note that we might spin to wait, so a true
|
|
* synchronous IPI is needed here, not deferred!), it will
|
|
* halt itself in the IPI. Otherwise it's unscheduled, so we
|
|
* can clean it up directly.
|
|
*/
|
|
if (thread_active_elsewhere(thread)) {
|
|
thread->base.thread_state |= (terminate ? _THREAD_ABORTING
|
|
: _THREAD_SUSPENDING);
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED)
|
|
arch_sched_ipi();
|
|
#endif
|
|
if (arch_is_in_isr()) {
|
|
key = thread_halt_spin(thread, key);
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
} else {
|
|
add_to_waitq_locked(_current, wq);
|
|
z_swap(&_sched_spinlock, key);
|
|
}
|
|
} else {
|
|
halt_thread(thread, terminate ? _THREAD_DEAD : _THREAD_SUSPENDED);
|
|
if ((thread == _current) && !arch_is_in_isr()) {
|
|
z_swap(&_sched_spinlock, key);
|
|
__ASSERT(!terminate, "aborted _current back from dead");
|
|
} else {
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void z_impl_k_thread_suspend(struct k_thread *thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread);
|
|
|
|
(void)z_abort_thread_timeout(thread);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
|
|
if ((thread->base.thread_state & _THREAD_SUSPENDED) != 0U) {
|
|
|
|
/* The target thread is already suspended. Nothing to do. */
|
|
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
return;
|
|
}
|
|
|
|
z_thread_halt(thread, key, false);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_suspend(struct k_thread *thread)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
z_impl_k_thread_suspend(thread);
|
|
}
|
|
#include <syscalls/k_thread_suspend_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
void z_impl_k_thread_resume(struct k_thread *thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
|
|
/* Do not try to resume a thread that was not suspended */
|
|
if (!z_is_thread_suspended(thread)) {
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
return;
|
|
}
|
|
|
|
z_mark_thread_as_not_suspended(thread);
|
|
ready_thread(thread);
|
|
|
|
z_reschedule(&_sched_spinlock, key);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_resume(struct k_thread *thread)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
z_impl_k_thread_resume(thread);
|
|
}
|
|
#include <syscalls/k_thread_resume_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
static _wait_q_t *pended_on_thread(struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(thread->base.pended_on);
|
|
|
|
return thread->base.pended_on;
|
|
}
|
|
|
|
static void unready_thread(struct k_thread *thread)
|
|
{
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
update_cache(thread == _current);
|
|
}
|
|
|
|
/* _sched_spinlock must be held */
|
|
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q)
|
|
{
|
|
unready_thread(thread);
|
|
z_mark_thread_as_pending(thread);
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread);
|
|
|
|
if (wait_q != NULL) {
|
|
thread->base.pended_on = wait_q;
|
|
_priq_wait_add(&wait_q->waitq, thread);
|
|
}
|
|
}
|
|
|
|
static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout)
|
|
{
|
|
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
z_add_thread_timeout(thread, timeout);
|
|
}
|
|
}
|
|
|
|
static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q,
|
|
k_timeout_t timeout)
|
|
{
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q));
|
|
#endif /* CONFIG_KERNEL_COHERENCE */
|
|
add_to_waitq_locked(thread, wait_q);
|
|
add_thread_timeout(thread, timeout);
|
|
}
|
|
|
|
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
|
|
k_timeout_t timeout)
|
|
{
|
|
__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread));
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
pend_locked(thread, wait_q, timeout);
|
|
}
|
|
}
|
|
|
|
static inline void unpend_thread_no_timeout(struct k_thread *thread)
|
|
{
|
|
_priq_wait_remove(&pended_on_thread(thread)->waitq, thread);
|
|
z_mark_thread_as_not_pending(thread);
|
|
thread->base.pended_on = NULL;
|
|
}
|
|
|
|
ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
if (thread->base.pended_on != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
}
|
|
}
|
|
|
|
void z_sched_wake_thread(struct k_thread *thread, bool is_timeout)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
bool killed = (thread->base.thread_state &
|
|
(_THREAD_DEAD | _THREAD_ABORTING));
|
|
|
|
#ifdef CONFIG_EVENTS
|
|
bool do_nothing = thread->no_wake_on_timeout && is_timeout;
|
|
|
|
thread->no_wake_on_timeout = false;
|
|
|
|
if (do_nothing) {
|
|
continue;
|
|
}
|
|
#endif /* CONFIG_EVENTS */
|
|
|
|
if (!killed) {
|
|
/* The thread is not being killed */
|
|
if (thread->base.pended_on != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
z_mark_thread_as_started(thread);
|
|
if (is_timeout) {
|
|
z_mark_thread_as_not_suspended(thread);
|
|
}
|
|
ready_thread(thread);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
/* Timeout handler for *_thread_timeout() APIs */
|
|
void z_thread_timeout(struct _timeout *timeout)
|
|
{
|
|
struct k_thread *thread = CONTAINER_OF(timeout,
|
|
struct k_thread, base.timeout);
|
|
|
|
z_sched_wake_thread(thread, true);
|
|
}
|
|
#endif /* CONFIG_SYS_CLOCK_EXISTS */
|
|
|
|
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
|
|
_wait_q_t *wait_q, k_timeout_t timeout)
|
|
{
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */
|
|
__ASSERT_NO_MSG(sizeof(_sched_spinlock) == 0 || lock != &_sched_spinlock);
|
|
|
|
/* We do a "lock swap" prior to calling z_swap(), such that
|
|
* the caller's lock gets released as desired. But we ensure
|
|
* that we hold the scheduler lock and leave local interrupts
|
|
* masked until we reach the context swich. z_swap() itself
|
|
* has similar code; the duplication is because it's a legacy
|
|
* API that doesn't expect to be called with scheduler lock
|
|
* held.
|
|
*/
|
|
(void) k_spin_lock(&_sched_spinlock);
|
|
pend_locked(_current, wait_q, timeout);
|
|
k_spin_release(lock);
|
|
return z_swap(&_sched_spinlock, key);
|
|
}
|
|
|
|
struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *thread = NULL;
|
|
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
thread = _priq_wait_best(&wait_q->waitq);
|
|
|
|
if (thread != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
}
|
|
|
|
return thread;
|
|
}
|
|
|
|
struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *thread = NULL;
|
|
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
thread = _priq_wait_best(&wait_q->waitq);
|
|
|
|
if (thread != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
}
|
|
}
|
|
|
|
return thread;
|
|
}
|
|
|
|
void z_unpend_thread(struct k_thread *thread)
|
|
{
|
|
z_unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
}
|
|
|
|
/* Priority set utility that does no rescheduling, it just changes the
|
|
* run queue state, returning true if a reschedule is needed later.
|
|
*/
|
|
bool z_thread_prio_set(struct k_thread *thread, int prio)
|
|
{
|
|
bool need_sched = 0;
|
|
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
need_sched = z_is_thread_ready(thread);
|
|
|
|
if (need_sched) {
|
|
/* Don't requeue on SMP if it's the running thread */
|
|
if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
thread->base.prio = prio;
|
|
queue_thread(thread);
|
|
} else {
|
|
thread->base.prio = prio;
|
|
}
|
|
update_cache(1);
|
|
} else {
|
|
thread->base.prio = prio;
|
|
}
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio);
|
|
|
|
return need_sched;
|
|
}
|
|
|
|
static inline bool resched(uint32_t key)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
_current_cpu->swap_ok = 0;
|
|
#endif /* CONFIG_SMP */
|
|
|
|
return arch_irq_unlocked(key) && !arch_is_in_isr();
|
|
}
|
|
|
|
/*
|
|
* Check if the next ready thread is the same as the current thread
|
|
* and save the trip if true.
|
|
*/
|
|
static inline bool need_swap(void)
|
|
{
|
|
/* the SMP case will be handled in C based z_swap() */
|
|
#ifdef CONFIG_SMP
|
|
return true;
|
|
#else
|
|
struct k_thread *new_thread;
|
|
|
|
/* Check if the next ready thread is the same as the current thread */
|
|
new_thread = _kernel.ready_q.cache;
|
|
return new_thread != _current;
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
|
|
{
|
|
if (resched(key.key) && need_swap()) {
|
|
z_swap(lock, key);
|
|
} else {
|
|
k_spin_unlock(lock, key);
|
|
signal_pending_ipi();
|
|
}
|
|
}
|
|
|
|
void z_reschedule_irqlock(uint32_t key)
|
|
{
|
|
if (resched(key) && need_swap()) {
|
|
z_swap_irqlock(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
signal_pending_ipi();
|
|
}
|
|
}
|
|
|
|
void k_sched_lock(void)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_lock);
|
|
|
|
z_sched_lock();
|
|
}
|
|
}
|
|
|
|
void k_sched_unlock(void)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
__ASSERT(_current->base.sched_locked != 0U, "");
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
++_current->base.sched_locked;
|
|
update_cache(0);
|
|
}
|
|
|
|
LOG_DBG("scheduler unlocked (%p:%d)",
|
|
_current, _current->base.sched_locked);
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_unlock);
|
|
|
|
z_reschedule_unlocked();
|
|
}
|
|
|
|
struct k_thread *z_swap_next_thread(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
struct k_thread *ret = next_up();
|
|
|
|
if (ret == _current) {
|
|
/* When not swapping, have to signal IPIs here. In
|
|
* the context switch case it must happen later, after
|
|
* _current gets requeued.
|
|
*/
|
|
signal_pending_ipi();
|
|
}
|
|
return ret;
|
|
#else
|
|
return _kernel.ready_q.cache;
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
#ifdef CONFIG_USE_SWITCH
|
|
/* Just a wrapper around _current = xxx with tracing */
|
|
static inline void set_current(struct k_thread *new_thread)
|
|
{
|
|
z_thread_mark_switched_out();
|
|
_current_cpu->current = new_thread;
|
|
}
|
|
|
|
/**
|
|
* @brief Determine next thread to execute upon completion of an interrupt
|
|
*
|
|
* Thread preemption is performed by context switching after the completion
|
|
* of a non-recursed interrupt. This function determines which thread to
|
|
* switch to if any. This function accepts as @p interrupted either:
|
|
*
|
|
* - The handle for the interrupted thread in which case the thread's context
|
|
* must already be fully saved and ready to be picked up by a different CPU.
|
|
*
|
|
* - NULL if more work is required to fully save the thread's state after
|
|
* it is known that a new thread is to be scheduled. It is up to the caller
|
|
* to store the handle resulting from the thread that is being switched out
|
|
* in that thread's "switch_handle" field after its
|
|
* context has fully been saved, following the same requirements as with
|
|
* the @ref arch_switch() function.
|
|
*
|
|
* If a new thread needs to be scheduled then its handle is returned.
|
|
* Otherwise the same value provided as @p interrupted is returned back.
|
|
* Those handles are the same opaque types used by the @ref arch_switch()
|
|
* function.
|
|
*
|
|
* @warning
|
|
* The @ref _current value may have changed after this call and not refer
|
|
* to the interrupted thread anymore. It might be necessary to make a local
|
|
* copy before calling this function.
|
|
*
|
|
* @param interrupted Handle for the thread that was interrupted or NULL.
|
|
* @retval Handle for the next thread to execute, or @p interrupted when
|
|
* no new thread is to be scheduled.
|
|
*/
|
|
void *z_get_next_switch_handle(void *interrupted)
|
|
{
|
|
z_check_stack_sentinel();
|
|
|
|
#ifdef CONFIG_SMP
|
|
void *ret = NULL;
|
|
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
struct k_thread *old_thread = _current, *new_thread;
|
|
|
|
if (IS_ENABLED(CONFIG_SMP)) {
|
|
old_thread->switch_handle = NULL;
|
|
}
|
|
new_thread = next_up();
|
|
|
|
z_sched_usage_switch(new_thread);
|
|
|
|
if (old_thread != new_thread) {
|
|
update_metairq_preempt(new_thread);
|
|
z_sched_switch_spin(new_thread);
|
|
arch_cohere_stacks(old_thread, interrupted, new_thread);
|
|
|
|
_current_cpu->swap_ok = 0;
|
|
set_current(new_thread);
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_reset_time_slice(new_thread);
|
|
#endif /* CONFIG_TIMESLICING */
|
|
|
|
#ifdef CONFIG_SPIN_VALIDATE
|
|
/* Changed _current! Update the spinlock
|
|
* bookkeeping so the validation doesn't get
|
|
* confused when the "wrong" thread tries to
|
|
* release the lock.
|
|
*/
|
|
z_spin_lock_set_owner(&_sched_spinlock);
|
|
#endif /* CONFIG_SPIN_VALIDATE */
|
|
|
|
/* A queued (runnable) old/current thread
|
|
* needs to be added back to the run queue
|
|
* here, and atomically with its switch handle
|
|
* being set below. This is safe now, as we
|
|
* will not return into it.
|
|
*/
|
|
if (z_is_thread_queued(old_thread)) {
|
|
runq_add(old_thread);
|
|
}
|
|
}
|
|
old_thread->switch_handle = interrupted;
|
|
ret = new_thread->switch_handle;
|
|
if (IS_ENABLED(CONFIG_SMP)) {
|
|
/* Active threads MUST have a null here */
|
|
new_thread->switch_handle = NULL;
|
|
}
|
|
}
|
|
signal_pending_ipi();
|
|
return ret;
|
|
#else
|
|
z_sched_usage_switch(_kernel.ready_q.cache);
|
|
_current->switch_handle = interrupted;
|
|
set_current(_kernel.ready_q.cache);
|
|
return _current->switch_handle;
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
#endif /* CONFIG_USE_SWITCH */
|
|
|
|
int z_unpend_all(_wait_q_t *wait_q)
|
|
{
|
|
int need_sched = 0;
|
|
struct k_thread *thread;
|
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) {
|
|
z_unpend_thread(thread);
|
|
z_ready_thread(thread);
|
|
need_sched = 1;
|
|
}
|
|
|
|
return need_sched;
|
|
}
|
|
|
|
void init_ready_q(struct _ready_q *ready_q)
|
|
{
|
|
#if defined(CONFIG_SCHED_SCALABLE)
|
|
ready_q->runq = (struct _priq_rb) {
|
|
.tree = {
|
|
.lessthan_fn = z_priq_rb_lessthan,
|
|
}
|
|
};
|
|
#elif defined(CONFIG_SCHED_MULTIQ)
|
|
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
|
|
sys_dlist_init(&ready_q->runq.queues[i]);
|
|
}
|
|
#else
|
|
sys_dlist_init(&ready_q->runq);
|
|
#endif
|
|
}
|
|
|
|
void z_sched_init(void)
|
|
{
|
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY
|
|
for (int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
|
|
init_ready_q(&_kernel.cpus[i].ready_q);
|
|
}
|
|
#else
|
|
init_ready_q(&_kernel.ready_q);
|
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */
|
|
}
|
|
|
|
void z_impl_k_thread_priority_set(k_tid_t thread, int prio)
|
|
{
|
|
/*
|
|
* Use NULL, since we cannot know what the entry point is (we do not
|
|
* keep track of it) and idle cannot change its priority.
|
|
*/
|
|
Z_ASSERT_VALID_PRIO(prio, NULL);
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
bool need_sched = z_thread_prio_set((struct k_thread *)thread, prio);
|
|
|
|
flag_ipi();
|
|
if (need_sched && _current->base.sched_locked == 0U) {
|
|
z_reschedule_unlocked();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
|
|
"invalid thread priority %d", prio));
|
|
#ifndef CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio,
|
|
"thread priority may only be downgraded (%d < %d)",
|
|
prio, thread->base.prio));
|
|
#endif /* CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY */
|
|
z_impl_k_thread_priority_set(thread, prio);
|
|
}
|
|
#include <syscalls/k_thread_priority_set_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline)
|
|
{
|
|
struct k_thread *thread = tid;
|
|
int32_t newdl = k_cycle_get_32() + deadline;
|
|
|
|
/* The prio_deadline field changes the sorting order, so can't
|
|
* change it while the thread is in the run queue (dlists
|
|
* actually are benign as long as we requeue it before we
|
|
* release the lock, but an rbtree will blow up if we break
|
|
* sorting!)
|
|
*/
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
thread->base.prio_deadline = newdl;
|
|
queue_thread(thread);
|
|
} else {
|
|
thread->base.prio_deadline = newdl;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline)
|
|
{
|
|
struct k_thread *thread = tid;
|
|
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(deadline > 0,
|
|
"invalid thread deadline %d",
|
|
(int)deadline));
|
|
|
|
z_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
|
|
}
|
|
#include <syscalls/k_thread_deadline_set_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_SCHED_DEADLINE */
|
|
|
|
bool k_can_yield(void)
|
|
{
|
|
return !(k_is_pre_kernel() || k_is_in_isr() ||
|
|
z_is_idle_thread_object(_current));
|
|
}
|
|
|
|
void z_impl_k_yield(void)
|
|
{
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, yield);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
|
|
if (!IS_ENABLED(CONFIG_SMP) ||
|
|
z_is_thread_queued(_current)) {
|
|
dequeue_thread(_current);
|
|
}
|
|
queue_thread(_current);
|
|
update_cache(1);
|
|
z_swap(&_sched_spinlock, key);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_yield(void)
|
|
{
|
|
z_impl_k_yield();
|
|
}
|
|
#include <syscalls/k_yield_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
static int32_t z_tick_sleep(k_ticks_t ticks)
|
|
{
|
|
uint32_t expected_wakeup_ticks;
|
|
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
LOG_DBG("thread %p for %lu ticks", _current, (unsigned long)ticks);
|
|
|
|
/* wait of 0 ms is treated as a 'yield' */
|
|
if (ticks == 0) {
|
|
k_yield();
|
|
return 0;
|
|
}
|
|
|
|
if (Z_TICK_ABS(ticks) <= 0) {
|
|
expected_wakeup_ticks = ticks + sys_clock_tick_get_32();
|
|
} else {
|
|
expected_wakeup_ticks = Z_TICK_ABS(ticks);
|
|
}
|
|
|
|
k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks);
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */
|
|
unready_thread(_current);
|
|
z_add_thread_timeout(_current, timeout);
|
|
z_mark_thread_as_suspended(_current);
|
|
|
|
(void)z_swap(&_sched_spinlock, key);
|
|
|
|
__ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), "");
|
|
|
|
ticks = (k_ticks_t)expected_wakeup_ticks - sys_clock_tick_get_32();
|
|
if (ticks > 0) {
|
|
return ticks;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t z_impl_k_sleep(k_timeout_t timeout)
|
|
{
|
|
k_ticks_t ticks;
|
|
|
|
__ASSERT(!arch_is_in_isr(), "");
|
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout);
|
|
|
|
/* in case of K_FOREVER, we suspend */
|
|
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
|
|
k_thread_suspend(_current);
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, (int32_t) K_TICKS_FOREVER);
|
|
|
|
return (int32_t) K_TICKS_FOREVER;
|
|
}
|
|
|
|
ticks = timeout.ticks;
|
|
|
|
ticks = z_tick_sleep(ticks);
|
|
|
|
int32_t ret = k_ticks_to_ms_ceil64(ticks);
|
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout)
|
|
{
|
|
return z_impl_k_sleep(timeout);
|
|
}
|
|
#include <syscalls/k_sleep_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
int32_t z_impl_k_usleep(int us)
|
|
{
|
|
int32_t ticks;
|
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us);
|
|
|
|
ticks = k_us_to_ticks_ceil64(us);
|
|
ticks = z_tick_sleep(ticks);
|
|
|
|
int32_t ret = k_ticks_to_us_ceil64(ticks);
|
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int32_t z_vrfy_k_usleep(int us)
|
|
{
|
|
return z_impl_k_usleep(us);
|
|
}
|
|
#include <syscalls/k_usleep_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
void z_impl_k_wakeup(k_tid_t thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread);
|
|
|
|
if (z_is_thread_pending(thread)) {
|
|
return;
|
|
}
|
|
|
|
if (z_abort_thread_timeout(thread) < 0) {
|
|
/* Might have just been sleeping forever */
|
|
if (thread->base.thread_state != _THREAD_SUSPENDED) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
|
|
z_mark_thread_as_not_suspended(thread);
|
|
|
|
if (!thread_active_elsewhere(thread)) {
|
|
ready_thread(thread);
|
|
}
|
|
|
|
if (arch_is_in_isr()) {
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
} else {
|
|
z_reschedule(&_sched_spinlock, key);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_wakeup(k_tid_t thread)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
z_impl_k_wakeup(thread);
|
|
}
|
|
#include <syscalls/k_wakeup_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
k_tid_t z_impl_k_sched_current_thread_query(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/* In SMP, _current is a field read from _current_cpu, which
|
|
* can race with preemption before it is read. We must lock
|
|
* local interrupts when reading it.
|
|
*/
|
|
unsigned int k = arch_irq_lock();
|
|
#endif /* CONFIG_SMP */
|
|
|
|
k_tid_t ret = _current_cpu->current;
|
|
|
|
#ifdef CONFIG_SMP
|
|
arch_irq_unlock(k);
|
|
#endif /* CONFIG_SMP */
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline k_tid_t z_vrfy_k_sched_current_thread_query(void)
|
|
{
|
|
return z_impl_k_sched_current_thread_query();
|
|
}
|
|
#include <syscalls/k_sched_current_thread_query_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
static inline void unpend_all(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *thread;
|
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
arch_thread_return_value_set(thread, 0);
|
|
ready_thread(thread);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_THREAD_ABORT_HOOK
|
|
extern void thread_abort_hook(struct k_thread *thread);
|
|
#endif /* CONFIG_THREAD_ABORT_HOOK */
|
|
|
|
/**
|
|
* @brief Dequeues the specified thread
|
|
*
|
|
* Dequeues the specified thread and move it into the specified new state.
|
|
*
|
|
* @param thread Identify the thread to halt
|
|
* @param new_state New thread state (_THREAD_DEAD or _THREAD_SUSPENDED)
|
|
*/
|
|
static void halt_thread(struct k_thread *thread, uint8_t new_state)
|
|
{
|
|
/* We hold the lock, and the thread is known not to be running
|
|
* anywhere.
|
|
*/
|
|
if ((thread->base.thread_state & new_state) == 0U) {
|
|
thread->base.thread_state |= new_state;
|
|
clear_halting(thread);
|
|
if (z_is_thread_queued(thread)) {
|
|
dequeue_thread(thread);
|
|
}
|
|
|
|
if (new_state == _THREAD_DEAD) {
|
|
if (thread->base.pended_on != NULL) {
|
|
unpend_thread_no_timeout(thread);
|
|
}
|
|
(void)z_abort_thread_timeout(thread);
|
|
unpend_all(&thread->join_queue);
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
unpend_all(&thread->halt_queue);
|
|
#endif /* CONFIG_SMP */
|
|
update_cache(1);
|
|
|
|
if (new_state == _THREAD_SUSPENDED) {
|
|
return;
|
|
}
|
|
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
|
|
arch_float_disable(thread);
|
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
|
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread);
|
|
|
|
z_thread_monitor_exit(thread);
|
|
#ifdef CONFIG_THREAD_ABORT_HOOK
|
|
thread_abort_hook(thread);
|
|
#endif /* CONFIG_THREAD_ABORT_HOOK */
|
|
|
|
#ifdef CONFIG_OBJ_CORE_THREAD
|
|
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
|
|
k_obj_core_stats_deregister(K_OBJ_CORE(thread));
|
|
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */
|
|
k_obj_core_unlink(K_OBJ_CORE(thread));
|
|
#endif /* CONFIG_OBJ_CORE_THREAD */
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
z_mem_domain_exit_thread(thread);
|
|
k_thread_perms_all_clear(thread);
|
|
k_object_uninit(thread->stack_obj);
|
|
k_object_uninit(thread);
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
|
|
k_thread_abort_cleanup(thread);
|
|
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */
|
|
}
|
|
}
|
|
|
|
void z_thread_abort(struct k_thread *thread)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
|
|
if (z_is_thread_essential(thread)) {
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
__ASSERT(false, "aborting essential thread %p", thread);
|
|
k_panic();
|
|
return;
|
|
}
|
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
return;
|
|
}
|
|
|
|
z_thread_halt(thread, key, true);
|
|
}
|
|
|
|
#if !defined(CONFIG_ARCH_HAS_THREAD_ABORT)
|
|
void z_impl_k_thread_abort(struct k_thread *thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread);
|
|
|
|
z_thread_abort(thread);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread);
|
|
}
|
|
#endif /* !CONFIG_ARCH_HAS_THREAD_ABORT */
|
|
|
|
int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
int ret = 0;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout);
|
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) {
|
|
z_sched_switch_spin(thread);
|
|
ret = 0;
|
|
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
|
|
ret = -EBUSY;
|
|
} else if ((thread == _current) ||
|
|
(thread->base.pended_on == &_current->join_queue)) {
|
|
ret = -EDEADLK;
|
|
} else {
|
|
__ASSERT(!arch_is_in_isr(), "cannot join in ISR");
|
|
add_to_waitq_locked(_current, &thread->join_queue);
|
|
add_thread_timeout(_current, timeout);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout);
|
|
ret = z_swap(&_sched_spinlock, key);
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret);
|
|
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/* Special case: don't oops if the thread is uninitialized. This is because
|
|
* the initialization bit does double-duty for thread objects; if false, means
|
|
* the thread object is truly uninitialized, or the thread ran and exited for
|
|
* some reason.
|
|
*
|
|
* Return true in this case indicating we should just do nothing and return
|
|
* success to the caller.
|
|
*/
|
|
static bool thread_obj_validate(struct k_thread *thread)
|
|
{
|
|
struct k_object *ko = k_object_find(thread);
|
|
int ret = k_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE);
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
return false;
|
|
case -EINVAL:
|
|
return true;
|
|
default:
|
|
#ifdef CONFIG_LOG
|
|
k_object_dump_error(ret, thread, ko, K_OBJ_THREAD);
|
|
#endif /* CONFIG_LOG */
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(ret, "access denied"));
|
|
}
|
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
|
|
}
|
|
|
|
static inline int z_vrfy_k_thread_join(struct k_thread *thread,
|
|
k_timeout_t timeout)
|
|
{
|
|
if (thread_obj_validate(thread)) {
|
|
return 0;
|
|
}
|
|
|
|
return z_impl_k_thread_join(thread, timeout);
|
|
}
|
|
#include <syscalls/k_thread_join_mrsh.c>
|
|
|
|
static inline void z_vrfy_k_thread_abort(k_tid_t thread)
|
|
{
|
|
if (thread_obj_validate(thread)) {
|
|
return;
|
|
}
|
|
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(!z_is_thread_essential(thread),
|
|
"aborting essential thread %p", thread));
|
|
|
|
z_impl_k_thread_abort((struct k_thread *)thread);
|
|
}
|
|
#include <syscalls/k_thread_abort_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
/*
|
|
* future scheduler.h API implementations
|
|
*/
|
|
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data)
|
|
{
|
|
struct k_thread *thread;
|
|
bool ret = false;
|
|
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
thread = _priq_wait_best(&wait_q->waitq);
|
|
|
|
if (thread != NULL) {
|
|
z_thread_return_value_set_with_data(thread,
|
|
swap_retval,
|
|
swap_data);
|
|
unpend_thread_no_timeout(thread);
|
|
(void)z_abort_thread_timeout(thread);
|
|
ready_thread(thread);
|
|
ret = true;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
|
|
_wait_q_t *wait_q, k_timeout_t timeout, void **data)
|
|
{
|
|
int ret = z_pend_curr(lock, key, wait_q, timeout);
|
|
|
|
if (data != NULL) {
|
|
*data = _current->base.swap_data;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int z_sched_waitq_walk(_wait_q_t *wait_q,
|
|
int (*func)(struct k_thread *, void *), void *data)
|
|
{
|
|
struct k_thread *thread;
|
|
int status = 0;
|
|
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
_WAIT_Q_FOR_EACH(wait_q, thread) {
|
|
|
|
/*
|
|
* Invoke the callback function on each waiting thread
|
|
* for as long as there are both waiting threads AND
|
|
* it returns 0.
|
|
*/
|
|
|
|
status = func(thread, data);
|
|
if (status != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|