6b4a4381de
Bug occurs when polling kernel uptime. Uptime was suddenly jumping because lptim counter was counted twice (from CNT and ARR registers) in case reload happens between values are fetched. Signed-off-by: Cyril Fougeray <cyril.fougeray@worldcoin.org>
450 lines
13 KiB
C
450 lines
13 KiB
C
/*
|
|
* Copyright (c) 2018 Foundries.io Ltd
|
|
* Copyright (c) 2019 STMicroelectronics
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr/device.h>
|
|
#include <soc.h>
|
|
#include <stm32_ll_lptim.h>
|
|
#include <stm32_ll_bus.h>
|
|
#include <stm32_ll_rcc.h>
|
|
#include <stm32_ll_pwr.h>
|
|
#include <stm32_ll_system.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <zephyr/sys_clock.h>
|
|
#include <zephyr/irq.h>
|
|
|
|
#include <zephyr/spinlock.h>
|
|
|
|
#define DT_DRV_COMPAT st_stm32_lptim
|
|
|
|
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) > 1
|
|
#error Only one LPTIM instance should be enabled
|
|
#endif
|
|
|
|
#define LPTIM (LPTIM_TypeDef *) DT_INST_REG_ADDR(0)
|
|
|
|
#if DT_INST_NUM_CLOCKS(0) == 1
|
|
#warning Kconfig for LPTIM source clock (LSI/LSE) is deprecated, use device tree.
|
|
static const struct stm32_pclken lptim_clk[] = {
|
|
STM32_CLOCK_INFO(0, DT_DRV_INST(0)),
|
|
/* Use Kconfig to configure source clocks fields */
|
|
/* Fortunately, values are consistent across enabled series */
|
|
#ifdef CONFIG_STM32_LPTIM_CLOCK_LSI
|
|
{.bus = STM32_SRC_LSI, .enr = LPTIM1_SEL(1)}
|
|
#else
|
|
{.bus = STM32_SRC_LSE, .enr = LPTIM1_SEL(3)}
|
|
#endif
|
|
};
|
|
#else
|
|
static const struct stm32_pclken lptim_clk[] = STM32_DT_INST_CLOCKS(0);
|
|
#endif
|
|
|
|
static const struct device *const clk_ctrl = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
|
|
/*
|
|
* Assumptions and limitations:
|
|
*
|
|
* - system clock based on an LPTIM instance, clocked by LSI or LSE
|
|
* - prescaler is set to 1 (LL_LPTIM_PRESCALER_DIV1 in the related register)
|
|
* - using LPTIM AutoReload capability to trig the IRQ (timeout irq)
|
|
* - when timeout irq occurs the counter is already reset
|
|
* - the maximum timeout duration is reached with the lptim_time_base value
|
|
* - with prescaler of 1, the max timeout (lptim_time_base) is 2seconds
|
|
*/
|
|
|
|
static uint32_t lptim_clock_freq = 32000;
|
|
static int32_t lptim_time_base;
|
|
|
|
|
|
/* minimum nb of clock cycles to have to set autoreload register correctly */
|
|
#define LPTIM_GUARD_VALUE 2
|
|
|
|
/* A 32bit value cannot exceed 0xFFFFFFFF/LPTIM_TIMEBASE counting cycles.
|
|
* This is for example about of 65000 x 2000ms when clocked by LSI
|
|
*/
|
|
static uint32_t accumulated_lptim_cnt;
|
|
/* Next autoreload value to set */
|
|
static uint32_t autoreload_next;
|
|
/* Indicate if the autoreload register is ready for a write */
|
|
static bool autoreload_ready = true;
|
|
|
|
static struct k_spinlock lock;
|
|
|
|
/* For tick accuracy, a specific tick to freq ratio is expected */
|
|
/* This check assumes LSI@32KHz or LSE@32768Hz */
|
|
#if !defined(CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE)
|
|
#if (((DT_CLOCKS_CELL_BY_IDX(DT_DRV_INST(0), 1, bus) == STM32_SRC_LSI) && \
|
|
(CONFIG_SYS_CLOCK_TICKS_PER_SEC != 4000)) || \
|
|
((DT_CLOCKS_CELL_BY_IDX(DT_DRV_INST(0), 1, bus) == STM32_SRC_LSE) && \
|
|
(CONFIG_SYS_CLOCK_TICKS_PER_SEC != 4096)))
|
|
#warning Advised tick freq is 4096 for LSE / 4000 for LSI
|
|
#endif
|
|
#endif /* !CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE */
|
|
|
|
static void lptim_irq_handler(const struct device *unused)
|
|
{
|
|
|
|
ARG_UNUSED(unused);
|
|
|
|
uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);
|
|
|
|
if ((LL_LPTIM_IsActiveFlag_ARROK(LPTIM) != 0)
|
|
&& LL_LPTIM_IsEnabledIT_ARROK(LPTIM) != 0) {
|
|
LL_LPTIM_ClearFlag_ARROK(LPTIM);
|
|
if ((autoreload_next > 0) && (autoreload_next != autoreload)) {
|
|
/* the new autoreload value change, we set it */
|
|
autoreload_ready = false;
|
|
LL_LPTIM_SetAutoReload(LPTIM, autoreload_next);
|
|
} else {
|
|
autoreload_ready = true;
|
|
}
|
|
}
|
|
|
|
if ((LL_LPTIM_IsActiveFlag_ARRM(LPTIM) != 0)
|
|
&& LL_LPTIM_IsEnabledIT_ARRM(LPTIM) != 0) {
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
|
|
/* do not change ARR yet, sys_clock_announce will do */
|
|
LL_LPTIM_ClearFLAG_ARRM(LPTIM);
|
|
|
|
/* increase the total nb of autoreload count
|
|
* used in the sys_clock_cycle_get_32() function.
|
|
*/
|
|
autoreload++;
|
|
|
|
accumulated_lptim_cnt += autoreload;
|
|
|
|
k_spin_unlock(&lock, key);
|
|
|
|
/* announce the elapsed time in ms (count register is 16bit) */
|
|
uint32_t dticks = (autoreload
|
|
* CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
/ lptim_clock_freq;
|
|
|
|
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL)
|
|
? dticks : (dticks > 0));
|
|
}
|
|
}
|
|
|
|
static void lptim_set_autoreload(uint32_t arr)
|
|
{
|
|
/* Update autoreload register */
|
|
autoreload_next = arr;
|
|
|
|
if (!autoreload_ready)
|
|
return;
|
|
|
|
/* The ARR register ready, we could set it directly */
|
|
if ((arr > 0) && (arr != LL_LPTIM_GetAutoReload(LPTIM))) {
|
|
/* The new autoreload value change, we set it */
|
|
autoreload_ready = false;
|
|
LL_LPTIM_ClearFlag_ARROK(LPTIM);
|
|
LL_LPTIM_SetAutoReload(LPTIM, arr);
|
|
}
|
|
}
|
|
|
|
static inline uint32_t z_clock_lptim_getcounter(void)
|
|
{
|
|
uint32_t lp_time;
|
|
uint32_t lp_time_prev_read;
|
|
|
|
/* It should be noted that to read reliably the content
|
|
* of the LPTIM_CNT register, two successive read accesses
|
|
* must be performed and compared
|
|
*/
|
|
lp_time = LL_LPTIM_GetCounter(LPTIM);
|
|
do {
|
|
lp_time_prev_read = lp_time;
|
|
lp_time = LL_LPTIM_GetCounter(LPTIM);
|
|
} while (lp_time != lp_time_prev_read);
|
|
return lp_time;
|
|
}
|
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle)
|
|
{
|
|
/* new LPTIM AutoReload value to set (aligned on Kernel ticks) */
|
|
uint32_t next_arr = 0;
|
|
|
|
ARG_UNUSED(idle);
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return;
|
|
}
|
|
|
|
if (ticks == K_TICKS_FOREVER) {
|
|
clock_control_off(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[0]);
|
|
return;
|
|
}
|
|
|
|
/* if LPTIM clock was previously stopped, it must now be restored */
|
|
clock_control_on(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[0]);
|
|
|
|
/* passing ticks==1 means "announce the next tick",
|
|
* ticks value of zero (or even negative) is legal and
|
|
* treated identically: it simply indicates the kernel would like the
|
|
* next tick announcement as soon as possible.
|
|
*/
|
|
ticks = CLAMP(ticks - 1, 1, lptim_time_base);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
|
|
/* read current counter value (cannot exceed 16bit) */
|
|
|
|
uint32_t lp_time = z_clock_lptim_getcounter();
|
|
|
|
uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);
|
|
|
|
if (LL_LPTIM_IsActiveFlag_ARRM(LPTIM)
|
|
|| ((autoreload - lp_time) < LPTIM_GUARD_VALUE)) {
|
|
/* interrupt happens or happens soon.
|
|
* It's impossible to set autoreload value.
|
|
*/
|
|
k_spin_unlock(&lock, key);
|
|
return;
|
|
}
|
|
|
|
/* calculate the next arr value (cannot exceed 16bit)
|
|
* adjust the next ARR match value to align on Ticks
|
|
* from the current counter value to first next Tick
|
|
*/
|
|
next_arr = (((lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
/ lptim_clock_freq) + 1) * lptim_clock_freq
|
|
/ (CONFIG_SYS_CLOCK_TICKS_PER_SEC);
|
|
/* add count unit from the expected nb of Ticks */
|
|
next_arr = next_arr + ((uint32_t)(ticks) * lptim_clock_freq)
|
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC - 1;
|
|
|
|
/* maximise to TIMEBASE */
|
|
if (next_arr > lptim_time_base) {
|
|
next_arr = lptim_time_base;
|
|
}
|
|
/* The new autoreload value must be LPTIM_GUARD_VALUE clock cycles
|
|
* after current lptim to make sure we don't miss
|
|
* an autoreload interrupt
|
|
*/
|
|
else if (next_arr < (lp_time + LPTIM_GUARD_VALUE)) {
|
|
next_arr = lp_time + LPTIM_GUARD_VALUE;
|
|
}
|
|
|
|
/* Update autoreload register */
|
|
lptim_set_autoreload(next_arr);
|
|
|
|
k_spin_unlock(&lock, key);
|
|
}
|
|
|
|
uint32_t sys_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return 0;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
|
|
uint32_t lp_time = 0;
|
|
|
|
/* In case of counter roll-over, add the autoreload value,
|
|
* even if the irq has not yet been handled.
|
|
* Check ARRM flag before loading counter to make
|
|
* sure we don't use a counter close to ARR that
|
|
* hasn't triggered ARRM yet, which would mistakenly
|
|
* account for double the number of ticks.
|
|
*/
|
|
if ((LL_LPTIM_IsActiveFlag_ARRM(LPTIM) != 0)
|
|
&& LL_LPTIM_IsEnabledIT_ARRM(LPTIM) != 0) {
|
|
lp_time += LL_LPTIM_GetAutoReload(LPTIM) + 1;
|
|
}
|
|
lp_time += z_clock_lptim_getcounter();
|
|
|
|
k_spin_unlock(&lock, key);
|
|
|
|
/* gives the value of LPTIM counter (ms)
|
|
* since the previous 'announce'
|
|
*/
|
|
uint64_t ret = ((uint64_t)lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq;
|
|
|
|
return (uint32_t)(ret);
|
|
}
|
|
|
|
uint32_t sys_clock_cycle_get_32(void)
|
|
{
|
|
/* just gives the accumulated count in a number of hw cycles */
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
|
|
uint32_t lp_time = z_clock_lptim_getcounter();
|
|
|
|
/* In case of counter roll-over, add this value,
|
|
* even if the irq has not yet been handled
|
|
*/
|
|
if ((LL_LPTIM_IsActiveFlag_ARRM(LPTIM) != 0)
|
|
&& LL_LPTIM_IsEnabledIT_ARRM(LPTIM) != 0) {
|
|
lp_time += LL_LPTIM_GetAutoReload(LPTIM) + 1;
|
|
}
|
|
|
|
lp_time += accumulated_lptim_cnt;
|
|
|
|
/* convert lptim count in a nb of hw cycles with precision */
|
|
uint64_t ret = ((uint64_t)lp_time * sys_clock_hw_cycles_per_sec()) / lptim_clock_freq;
|
|
|
|
k_spin_unlock(&lock, key);
|
|
|
|
/* convert in hw cycles (keeping 32bit value) */
|
|
return (uint32_t)(ret);
|
|
}
|
|
|
|
static int sys_clock_driver_init(const struct device *dev)
|
|
{
|
|
int err;
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
if (!device_is_ready(clk_ctrl)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Enable LPTIM bus clock */
|
|
err = clock_control_on(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[0]);
|
|
if (err < 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
#if defined(LL_APB1_GRP1_PERIPH_LPTIM1)
|
|
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPTIM1);
|
|
#elif defined(LL_APB3_GRP1_PERIPH_LPTIM1)
|
|
LL_SRDAMR_GRP1_EnableAutonomousClock(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN);
|
|
#endif
|
|
|
|
/* Enable LPTIM clock source */
|
|
err = clock_control_configure(clk_ctrl,
|
|
(clock_control_subsys_t *) &lptim_clk[1],
|
|
NULL);
|
|
if (err < 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
/* Get LPTIM clock freq */
|
|
err = clock_control_get_rate(clk_ctrl, (clock_control_subsys_t *) &lptim_clk[1],
|
|
&lptim_clock_freq);
|
|
|
|
if (err < 0) {
|
|
return -EIO;
|
|
}
|
|
#if defined(CONFIG_SOC_SERIES_STM32L0X)
|
|
/* Driver only supports freqs up to 32768Hz. On L0, LSI freq is 37KHz,
|
|
* which will overflow the LPTIM counter.
|
|
* Previous LPTIM configuration using device tree was doing forcing this
|
|
* with a Kconfig default. Impact is that time is 1.13 faster than reality.
|
|
* Following lines reproduce this behavior in order not to change behavior.
|
|
* This issue will be fixed by implementation LPTIM prescaler support.
|
|
*/
|
|
if (lptim_clk[1].bus == STM32_SRC_LSI) {
|
|
lptim_clock_freq = KHZ(32);
|
|
}
|
|
#endif
|
|
|
|
/* Set LPTIM time base based on clck source freq
|
|
* Time base = (2s * freq) - 1
|
|
*/
|
|
if (lptim_clock_freq == KHZ(32)) {
|
|
lptim_time_base = 0xF9FF;
|
|
} else if (lptim_clock_freq == 32768) {
|
|
lptim_time_base = 0xFFFF;
|
|
} else {
|
|
return -EIO;
|
|
}
|
|
|
|
/* Clear the event flag and possible pending interrupt */
|
|
IRQ_CONNECT(DT_INST_IRQN(0),
|
|
DT_INST_IRQ(0, priority),
|
|
lptim_irq_handler, 0, 0);
|
|
irq_enable(DT_INST_IRQN(0));
|
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32WLX
|
|
/* Enable the LPTIM wakeup EXTI line */
|
|
LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_29);
|
|
#endif
|
|
|
|
/* configure the LPTIM counter */
|
|
LL_LPTIM_SetClockSource(LPTIM, LL_LPTIM_CLK_SOURCE_INTERNAL);
|
|
/* configure the LPTIM prescaler with 1 */
|
|
LL_LPTIM_SetPrescaler(LPTIM, LL_LPTIM_PRESCALER_DIV1);
|
|
#ifdef CONFIG_SOC_SERIES_STM32U5X
|
|
LL_LPTIM_OC_SetPolarity(LPTIM, LL_LPTIM_CHANNEL_CH1,
|
|
LL_LPTIM_OUTPUT_POLARITY_REGULAR);
|
|
#else
|
|
LL_LPTIM_SetPolarity(LPTIM, LL_LPTIM_OUTPUT_POLARITY_REGULAR);
|
|
#endif
|
|
LL_LPTIM_SetUpdateMode(LPTIM, LL_LPTIM_UPDATE_MODE_IMMEDIATE);
|
|
LL_LPTIM_SetCounterMode(LPTIM, LL_LPTIM_COUNTER_MODE_INTERNAL);
|
|
LL_LPTIM_DisableTimeout(LPTIM);
|
|
/* counting start is initiated by software */
|
|
LL_LPTIM_TrigSw(LPTIM);
|
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32U5X
|
|
/* Enable the LPTIM before proceeding with configuration */
|
|
LL_LPTIM_Enable(LPTIM);
|
|
|
|
LL_LPTIM_DisableIT_CC1(LPTIM);
|
|
while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) {
|
|
}
|
|
LL_LPTIM_ClearFlag_DIEROK(LPTIM);
|
|
LL_LPTIM_ClearFLAG_CC1(LPTIM);
|
|
#else
|
|
/* LPTIM interrupt set-up before enabling */
|
|
/* no Compare match Interrupt */
|
|
LL_LPTIM_DisableIT_CMPM(LPTIM);
|
|
LL_LPTIM_ClearFLAG_CMPM(LPTIM);
|
|
#endif
|
|
|
|
/* Autoreload match Interrupt */
|
|
LL_LPTIM_EnableIT_ARRM(LPTIM);
|
|
#ifdef CONFIG_SOC_SERIES_STM32U5X
|
|
while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) {
|
|
}
|
|
LL_LPTIM_ClearFlag_DIEROK(LPTIM);
|
|
#endif
|
|
LL_LPTIM_ClearFLAG_ARRM(LPTIM);
|
|
/* ARROK bit validates the write operation to ARR register */
|
|
LL_LPTIM_EnableIT_ARROK(LPTIM);
|
|
LL_LPTIM_ClearFlag_ARROK(LPTIM);
|
|
|
|
accumulated_lptim_cnt = 0;
|
|
|
|
#ifndef CONFIG_SOC_SERIES_STM32U5X
|
|
/* Enable the LPTIM counter */
|
|
LL_LPTIM_Enable(LPTIM);
|
|
#endif
|
|
|
|
/* Set the Autoreload value once the timer is enabled */
|
|
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* LPTIM is triggered on a LPTIM_TIMEBASE period */
|
|
lptim_set_autoreload(lptim_time_base);
|
|
} else {
|
|
/* LPTIM is triggered on a Tick period */
|
|
lptim_set_autoreload((lptim_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC) - 1);
|
|
}
|
|
|
|
/* Start the LPTIM counter in continuous mode */
|
|
LL_LPTIM_StartCounter(LPTIM, LL_LPTIM_OPERATING_MODE_CONTINUOUS);
|
|
|
|
#ifdef CONFIG_DEBUG
|
|
/* stop LPTIM during DEBUG */
|
|
#if defined(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP)
|
|
LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP);
|
|
#elif defined(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP)
|
|
LL_DBGMCU_APB3_GRP1_FreezePeriph(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP);
|
|
#endif
|
|
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
|
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|