zephyr/drivers/timer/stm32_lptim_timer.c
Erwan Gouriou 5776c82c85 drivers/timer: stm32_lptim: Move to new DT api
Use NODELABEL macros rather than DT_INST as this driver is so far
limited to support of LPTIM1 instance.


Signed-off-by: Erwan Gouriou <erwan.gouriou@linaro.org>
2020-04-24 12:09:17 -05:00

308 lines
8.5 KiB
C

/*
* Copyright (c) 2018 Foundries.io Ltd
* Copyright (c) 2019 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
/*
* Assumptions and limitations:
*
* - system clock based on an LPTIM1 instance, clocked by LSI or LSE
* - prescaler is set to 1 (LL_LPTIM_PRESCALER_DIV1 in the related register)
* - using LPTIM1 AutoReload capability to trig the IRQ (timeout irq)
* - when timeout irq occurs the counter is already reset
* - the maximum timeout duration is reached with the LPTIM_TIMEBASE value
* - with prescaler of 1, the max timeout (LPTIM_TIMEBASE) is 2seconds
*/
#define LPTIM_CLOCK CONFIG_STM32_LPTIM_CLOCK
#define LPTIM_TIMEBASE CONFIG_STM32_LPTIM_TIMEBASE
/* nb of LPTIM counter unit per kernel tick */
#define COUNT_PER_TICK (LPTIM_CLOCK / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/* A 32bit value cannot exceed 0xFFFFFFFF/LPTIM_TIMEBASE counting cycles.
* This is for example about of 65000 x 2000ms when clocked by LSI
*/
static u32_t accumulated_lptim_cnt;
static struct k_spinlock lock;
static void lptim_irq_handler(struct device *unused)
{
ARG_UNUSED(unused);
if ((LL_LPTIM_IsActiveFlag_ARRM(LPTIM1) != 0)
&& LL_LPTIM_IsEnabledIT_ARRM(LPTIM1) != 0) {
k_spinlock_key_t key = k_spin_lock(&lock);
/* LPTIM1 CNT register is already reset after one autoreload */
volatile u32_t lp_time = LL_LPTIM_GetCounter(LPTIM1);
/* It should be noted that to read reliably the content
* of the LPTIM_CNT register, two successive read accesses
* must be performed and compared
*/
while (lp_time != LL_LPTIM_GetCounter(LPTIM1)) {
lp_time = LL_LPTIM_GetCounter(LPTIM1);
}
lp_time += LL_LPTIM_GetAutoReload(LPTIM1) + 1;
/* do not change ARR yet, z_clock_announce will do */
LL_LPTIM_ClearFLAG_ARRM(LPTIM1);
/* increase the total nb of lptim count
* used in the z_timer_cycle_get_32() function.
* Reading the CNT register gives a reliable value
*/
accumulated_lptim_cnt += lp_time;
k_spin_unlock(&lock, key);
/* announce the elapsed time in ms (count register is 16bit) */
u32_t dticks = (lp_time
* CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/ LPTIM_CLOCK;
z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL)
? dticks : 1);
}
}
int z_clock_driver_init(struct device *device)
{
ARG_UNUSED(device);
/* enable LPTIM clock source */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_LPTIM1);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_LPTIM1);
#if defined(CONFIG_STM32_LPTIM_CLOCK_LSI)
/* enable LSI clock */
#ifdef CONFIG_SOC_SERIES_STM32WBX
LL_RCC_LSI1_Enable();
while (!LL_RCC_LSI1_IsReady()) {
#else
LL_RCC_LSI_Enable();
while (!LL_RCC_LSI_IsReady()) {
#endif /* CONFIG_SOC_SERIES_STM32WBX */
/* Wait for LSI ready */
}
LL_RCC_SetLPTIMClockSource(LL_RCC_LPTIM1_CLKSOURCE_LSI);
#else /* CONFIG_STM32_LPTIM_CLOCK_LSI */
#if defined(LL_APB1_GRP1_PERIPH_PWR)
/* Enable the power interface clock */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR);
#endif /* LL_APB1_GRP1_PERIPH_PWR */
/* enable backup domain */
LL_PWR_EnableBkUpAccess();
LL_RCC_ForceBackupDomainReset();
LL_RCC_ReleaseBackupDomainReset();
/* enable LSE clock */
LL_RCC_LSE_DisableBypass();
LL_RCC_LSE_Enable();
while (!LL_RCC_LSE_IsReady()) {
/* Wait for LSE ready */
}
LL_RCC_SetLPTIMClockSource(LL_RCC_LPTIM1_CLKSOURCE_LSE);
#endif /* CONFIG_STM32_LPTIM_CLOCK_LSI */
/* Clear the event flag and possible pending interrupt */
IRQ_CONNECT(DT_IRQN(DT_NODELABEL(lptim1)),
DT_IRQ(DT_NODELABEL(lptim1), priority),
lptim_irq_handler, 0, 0);
irq_enable(DT_IRQN(DT_NODELABEL(lptim1)));
/* configure the LPTIM1 counter */
LL_LPTIM_SetClockSource(LPTIM1, LL_LPTIM_CLK_SOURCE_INTERNAL);
/* configure the LPTIM1 prescaler with 1 */
LL_LPTIM_SetPrescaler(LPTIM1, LL_LPTIM_PRESCALER_DIV1);
LL_LPTIM_SetPolarity(LPTIM1, LL_LPTIM_OUTPUT_POLARITY_REGULAR);
LL_LPTIM_SetUpdateMode(LPTIM1, LL_LPTIM_UPDATE_MODE_IMMEDIATE);
LL_LPTIM_SetCounterMode(LPTIM1, LL_LPTIM_COUNTER_MODE_INTERNAL);
LL_LPTIM_DisableTimeout(LPTIM1);
/* counting start is initiated by software */
LL_LPTIM_TrigSw(LPTIM1);
/* LPTIM1 interrupt set-up before enabling */
/* no Compare match Interrupt */
LL_LPTIM_DisableIT_CMPM(LPTIM1);
LL_LPTIM_ClearFLAG_CMPM(LPTIM1);
/* Autoreload match Interrupt */
LL_LPTIM_EnableIT_ARRM(LPTIM1);
LL_LPTIM_ClearFLAG_ARRM(LPTIM1);
/* ARROK bit validates the write operation to ARR register */
LL_LPTIM_ClearFlag_ARROK(LPTIM1);
accumulated_lptim_cnt = 0;
/* Enable the LPTIM1 counter */
LL_LPTIM_Enable(LPTIM1);
/* Set the Autoreload value once the timer is enabled */
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* LPTIM1 is triggered on a LPTIM_TIMEBASE period */
LL_LPTIM_SetAutoReload(LPTIM1, LPTIM_TIMEBASE);
} else {
/* LPTIM1 is triggered on a Tick period */
LL_LPTIM_SetAutoReload(LPTIM1, COUNT_PER_TICK);
}
/* Start the LPTIM counter in continuous mode */
LL_LPTIM_StartCounter(LPTIM1, LL_LPTIM_OPERATING_MODE_CONTINUOUS);
#ifdef CONFIG_DEBUG
/* stop LPTIM1 during DEBUG */
LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP);
#endif
return 0;
}
void z_clock_set_timeout(s32_t ticks, bool idle)
{
/* new LPTIM1 AutoReload value to set (aligned on Kernel ticks) */
u32_t next_arr = 0;
ARG_UNUSED(idle);
/* ARROK bit validates previous write operation to ARR register */
while (LL_LPTIM_IsActiveFlag_ARROK(LPTIM1) == 0) {
}
LL_LPTIM_ClearFlag_ARROK(LPTIM1);
#ifdef CONFIG_TICKLESS_KERNEL
if (ticks == K_TICKS_FOREVER) {
/* disable LPTIM */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_LPTIM1);
LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_LPTIM1);
return;
}
/* passing ticks==1 means "announce the next tick",
* ticks value of zero (or even negative) is legal and
* treated identically: it simply indicates the kernel would like the
* next tick announcement as soon as possible.
*/
if (ticks <= (s32_t)1) {
ticks = 1;
} else {
ticks = (ticks - 1);
}
/* maximise Tick to keep next_arr on 32bit values,
* in anycase the ARR cannot exceed LPTIM_TIMEBASE
*/
if (ticks > (s32_t)0xFFFF) {
ticks = 0xFFFF;
}
k_spinlock_key_t key = k_spin_lock(&lock);
/* read current counter value (cannot exceed 16bit) */
volatile u32_t lp_time = LL_LPTIM_GetCounter(LPTIM1);
/* It should be noted that to read reliably the content
* of the LPTIM_CNT register, two successive read accesses
* must be performed and compared
*/
while (lp_time != LL_LPTIM_GetCounter(LPTIM1)) {
lp_time = LL_LPTIM_GetCounter(LPTIM1);
}
/* calculate the next arr value (cannot exceed 16bit)
* adjust the next ARR match value to align on Ticks
* from the current counter value to first next Tick
*/
next_arr = (((lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/ LPTIM_CLOCK) + 1) * LPTIM_CLOCK
/ (CONFIG_SYS_CLOCK_TICKS_PER_SEC);
/* add count unit from the expected nb of Ticks */
next_arr = next_arr + ((u32_t)(ticks) * LPTIM_CLOCK)
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC + 1;
/* maximise to TIMEBASE */
if (next_arr > LPTIM_TIMEBASE) {
next_arr = LPTIM_TIMEBASE;
}
/* run timer and wait for the reload match */
LL_LPTIM_SetAutoReload(LPTIM1, next_arr);
k_spin_unlock(&lock, key);
#endif /* CONFIG_TICKLESS_KERNEL */
}
u32_t z_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
volatile u32_t lp_time = LL_LPTIM_GetCounter(LPTIM1);
/* It should be noted that to read reliably the content
* of the LPTIM_CNT register, two successive read accesses
* must be performed and compared
*/
while (lp_time != LL_LPTIM_GetCounter(LPTIM1)) {
lp_time = LL_LPTIM_GetCounter(LPTIM1);
}
k_spin_unlock(&lock, key);
/* gives the value of LPTIM1 counter (ms)
* since the previous 'announce'
*/
u32_t ret = ((lp_time + 1) * 1000) / LPTIM_CLOCK;
/* convert to ticks */
return z_ms_to_ticks(ret);
}
u32_t z_timer_cycle_get_32(void)
{
/* just gives the accumulated count in a number of hw cycles */
k_spinlock_key_t key = k_spin_lock(&lock);
volatile u32_t lp_time = LL_LPTIM_GetCounter(LPTIM1);
/* It should be noted that to read reliably the content
* of the LPTIM_CNT register, two successive read accesses
* must be performed and compared
*/
while (lp_time != LL_LPTIM_GetCounter(LPTIM1)) {
lp_time = LL_LPTIM_GetCounter(LPTIM1);
}
lp_time += accumulated_lptim_cnt;
k_spin_unlock(&lock, key);
/* convert in hw cycles (keeping 32bit value) */
return ((lp_time / (LPTIM_CLOCK / 1000))
* (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / 1000));
}