zephyr/include/net/net_pkt.h
David B. Kinder 1de7038f1e doc: fix doxygen API comment misspellings
Fix misspellings in doxygen comments missed during regular reviews

Signed-off-by: David B. Kinder <david.b.kinder@intel.com>
2019-02-16 09:23:41 -06:00

2551 lines
74 KiB
C

/** @file
* @brief Network packet buffer descriptor API
*
* Network data is passed between different parts of the stack via
* net_buf struct.
*/
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/* Data buffer API - used for all data to/from net */
#ifndef ZEPHYR_INCLUDE_NET_NET_PKT_H_
#define ZEPHYR_INCLUDE_NET_NET_PKT_H_
#include <zephyr/types.h>
#include <stdbool.h>
#include <net/buf.h>
#include <net/net_core.h>
#include <net/net_linkaddr.h>
#include <net/net_ip.h>
#include <net/net_if.h>
#include <net/net_context.h>
#include <net/ethernet_vlan.h>
#include <net/ptp_time.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Network packet management library
* @defgroup net_pkt Network Packet Library
* @ingroup networking
* @{
*/
struct net_context;
/* buffer cursor used in net_pkt */
struct net_pkt_cursor {
/** Current net_buf pointer by the cursor */
struct net_buf *buf;
/** Current position in the data buffer of the net_buf */
u8_t *pos;
};
/* Note that if you add new fields into net_pkt, remember to update
* net_pkt_clone() function.
*/
struct net_pkt {
/** FIFO uses first 4 bytes itself, reserve space */
int _reserved;
/** Internal variable that is used when packet is sent */
struct k_work work;
/** Slab pointer from where it belongs to */
struct k_mem_slab *slab;
/** buffer holding the packet */
union {
struct net_buf *frags;
struct net_buf *buffer;
};
/** Internal buffer iterator used for reading/writing */
struct net_pkt_cursor cursor;
/** Network connection context */
struct net_context *context;
/** Network context token that user can set. This is passed
* to user callback when data has been sent.
*/
void *token;
/** Network interface */
struct net_if *iface;
/** @cond ignore */
#if defined(CONFIG_NET_ROUTING)
struct net_if *orig_iface; /* Original network interface */
#endif
#if defined(CONFIG_NET_PKT_TIMESTAMP)
/** Timestamp if available. */
struct net_ptp_time timestamp;
#endif
u8_t *appdata; /* application data starts here */
/** Reference counter */
atomic_t atomic_ref;
/* Filled by layer 2 when network packet is received. */
struct net_linkaddr lladdr_src;
struct net_linkaddr lladdr_dst;
#if defined(CONFIG_NET_STATISTICS)
/* If statistics is enabled, then speed up length calculation by
* doing it only once. This value is updated in net_if_queue_tx()
* when packet is about to be sent.
*/
u16_t total_pkt_len;
#endif
u16_t data_len; /* amount of payload data that can be added */
u16_t appdatalen;
u8_t ip_hdr_len; /* pre-filled in order to avoid func call */
u8_t overwrite : 1; /* Is packet content being overwritten? */
u8_t sent_or_eof: 1; /* For outgoing packet: is this sent or not
* For incoming packet of a socket: last
* packet before EOF
* Used only if defined(CONFIG_NET_TCP)
*/
union {
u8_t pkt_queued: 1; /* For outgoing packet: is this packet
* queued to be sent but has not reached
* the driver yet.
* Used only if defined(CONFIG_NET_TCP)
*/
u8_t gptp_pkt: 1; /* For outgoing packet: is this packet
* a GPTP packet.
* Used only if defined (CONFIG_NET_GPTP)
*/
};
u8_t forwarding : 1; /* Are we forwarding this pkt
* Used only if defined(CONFIG_NET_ROUTE)
*/
u8_t family : 3; /* IPv4 vs IPv6 */
union {
u8_t ipv4_auto_arp_msg : 1; /* Is this pkt IPv4 autoconf ARP
* message. Used only if
* defined(CONFIG_NET_IPV4_AUTO).
* Note: family needs to be
* AF_INET.
*/
u8_t lldp_pkt : 1; /* Is this pkt an LLDP message.
* Used only if
* defined(CONFIG_NET_LLDP).
* Note: family needs to be
* AF_UNSPEC.
*/
};
#if defined(CONFIG_NET_TCP)
sys_snode_t sent_list;
#endif
union {
/* IPv6 hop limit or IPv4 ttl for this network packet.
* The value is shared between IPv6 and IPv4.
*/
u8_t ipv6_hop_limit;
u8_t ipv4_ttl;
};
#if NET_TC_COUNT > 1
/** Network packet priority, can be left out in which case packet
* is not prioritised.
*/
u8_t priority;
#endif
#if defined(CONFIG_NET_VLAN)
/* VLAN TCI (Tag Control Information). This contains the Priority
* Code Point (PCP), Drop Eligible Indicator (DEI) and VLAN
* Identifier (VID, called more commonly VLAN tag). This value is
* kept in host byte order.
*/
u16_t vlan_tci;
#endif /* CONFIG_NET_VLAN */
#if defined(CONFIG_NET_IPV6)
u16_t ipv6_ext_len; /* length of extension headers */
/* Where is the start of the last header before payload data
* in IPv6 packet. This is offset value from start of the IPv6
* packet. Note that this value should be updated by who ever
* adds IPv6 extension headers to the network packet.
*/
u16_t ipv6_prev_hdr_start;
#if defined(CONFIG_NET_IPV6_FRAGMENT)
u16_t ipv6_fragment_offset; /* Fragment offset of this packet */
u32_t ipv6_fragment_id; /* Fragment id */
u16_t ipv6_frag_hdr_start; /* Where starts the fragment header */
#endif /* CONFIG_NET_IPV6_FRAGMENT */
u8_t ipv6_ext_opt_len; /* IPv6 ND option length */
u8_t ipv6_next_hdr; /* What is the very first next header */
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_IEEE802154)
u8_t ieee802154_rssi; /* Received Signal Strength Indication */
u8_t ieee802154_lqi; /* Link Quality Indicator */
#endif
/* @endcond */
};
/** @cond ignore */
static inline struct k_work *net_pkt_work(struct net_pkt *pkt)
{
return &pkt->work;
}
/* The interface real ll address */
static inline struct net_linkaddr *net_pkt_lladdr_if(struct net_pkt *pkt)
{
return net_if_get_link_addr(pkt->iface);
}
static inline struct net_context *net_pkt_context(struct net_pkt *pkt)
{
return pkt->context;
}
static inline void net_pkt_set_context(struct net_pkt *pkt,
struct net_context *ctx)
{
pkt->context = ctx;
}
static inline void *net_pkt_token(struct net_pkt *pkt)
{
return pkt->token;
}
static inline void net_pkt_set_token(struct net_pkt *pkt, void *token)
{
pkt->token = token;
}
static inline struct net_if *net_pkt_iface(struct net_pkt *pkt)
{
return pkt->iface;
}
static inline void net_pkt_set_iface(struct net_pkt *pkt, struct net_if *iface)
{
pkt->iface = iface;
/* If the network interface is set in pkt, then also set the type of
* the network address that is stored in pkt. This is done here so
* that the address type is properly set and is not forgotten.
*/
pkt->lladdr_src.type = net_if_get_link_addr(iface)->type;
pkt->lladdr_dst.type = net_if_get_link_addr(iface)->type;
}
static inline struct net_if *net_pkt_orig_iface(struct net_pkt *pkt)
{
#if defined(CONFIG_NET_ROUTING)
return pkt->orig_iface;
#else
return pkt->iface;
#endif
}
static inline void net_pkt_set_orig_iface(struct net_pkt *pkt,
struct net_if *iface)
{
#if defined(CONFIG_NET_ROUTING)
pkt->orig_iface = iface;
#endif
}
static inline u8_t net_pkt_family(struct net_pkt *pkt)
{
return pkt->family;
}
static inline void net_pkt_set_family(struct net_pkt *pkt, u8_t family)
{
pkt->family = family;
}
static inline bool net_pkt_is_gptp(struct net_pkt *pkt)
{
return !!(pkt->gptp_pkt);
}
static inline void net_pkt_set_gptp(struct net_pkt *pkt, bool is_gptp)
{
pkt->gptp_pkt = is_gptp;
}
static inline u8_t net_pkt_ip_hdr_len(struct net_pkt *pkt)
{
return pkt->ip_hdr_len;
}
static inline void net_pkt_set_ip_hdr_len(struct net_pkt *pkt, u8_t len)
{
pkt->ip_hdr_len = len;
}
static inline u8_t net_pkt_sent(struct net_pkt *pkt)
{
return pkt->sent_or_eof;
}
static inline void net_pkt_set_sent(struct net_pkt *pkt, bool sent)
{
pkt->sent_or_eof = sent;
}
static inline u8_t net_pkt_queued(struct net_pkt *pkt)
{
return pkt->pkt_queued;
}
static inline void net_pkt_set_queued(struct net_pkt *pkt, bool send)
{
pkt->pkt_queued = send;
}
#if defined(CONFIG_NET_SOCKETS)
static inline u8_t net_pkt_eof(struct net_pkt *pkt)
{
return pkt->sent_or_eof;
}
static inline void net_pkt_set_eof(struct net_pkt *pkt, bool eof)
{
pkt->sent_or_eof = eof;
}
#endif
#if defined(CONFIG_NET_ROUTE)
static inline bool net_pkt_forwarding(struct net_pkt *pkt)
{
return pkt->forwarding;
}
static inline void net_pkt_set_forwarding(struct net_pkt *pkt, bool forward)
{
pkt->forwarding = forward;
}
#else
static inline bool net_pkt_forwarding(struct net_pkt *pkt)
{
return false;
}
#endif
#if defined(CONFIG_NET_IPV4)
static inline u8_t net_pkt_ipv4_ttl(struct net_pkt *pkt)
{
return pkt->ipv4_ttl;
}
static inline void net_pkt_set_ipv4_ttl(struct net_pkt *pkt,
u8_t ttl)
{
pkt->ipv4_ttl = ttl;
}
#else
static inline u8_t net_pkt_ipv4_ttl(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv4_ttl(struct net_pkt *pkt,
u8_t ttl)
{
ARG_UNUSED(pkt);
ARG_UNUSED(ttl);
}
#endif
#if defined(CONFIG_NET_IPV6)
static inline u8_t net_pkt_ipv6_ext_opt_len(struct net_pkt *pkt)
{
return pkt->ipv6_ext_opt_len;
}
static inline void net_pkt_set_ipv6_ext_opt_len(struct net_pkt *pkt,
u8_t len)
{
pkt->ipv6_ext_opt_len = len;
}
static inline u8_t net_pkt_ipv6_next_hdr(struct net_pkt *pkt)
{
return pkt->ipv6_next_hdr;
}
static inline void net_pkt_set_ipv6_next_hdr(struct net_pkt *pkt, u8_t next_hdr)
{
pkt->ipv6_next_hdr = next_hdr;
}
static inline u16_t net_pkt_ipv6_ext_len(struct net_pkt *pkt)
{
return pkt->ipv6_ext_len;
}
static inline void net_pkt_set_ipv6_ext_len(struct net_pkt *pkt, u16_t len)
{
pkt->ipv6_ext_len = len;
}
static inline u16_t net_pkt_ipv6_hdr_prev(struct net_pkt *pkt)
{
return pkt->ipv6_prev_hdr_start;
}
static inline void net_pkt_set_ipv6_hdr_prev(struct net_pkt *pkt,
u16_t offset)
{
pkt->ipv6_prev_hdr_start = offset;
}
static inline u8_t net_pkt_ipv6_hop_limit(struct net_pkt *pkt)
{
return pkt->ipv6_hop_limit;
}
static inline void net_pkt_set_ipv6_hop_limit(struct net_pkt *pkt,
u8_t hop_limit)
{
pkt->ipv6_hop_limit = hop_limit;
}
#else /* CONFIG_NET_IPV6 */
static inline u8_t net_pkt_ipv6_ext_opt_len(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_ext_opt_len(struct net_pkt *pkt,
u8_t len)
{
ARG_UNUSED(pkt);
ARG_UNUSED(len);
}
static inline u8_t net_pkt_ipv6_next_hdr(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_next_hdr(struct net_pkt *pkt, u8_t next_hdr)
{
ARG_UNUSED(pkt);
ARG_UNUSED(next_hdr);
}
static inline u16_t net_pkt_ipv6_ext_len(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_ext_len(struct net_pkt *pkt, u16_t len)
{
ARG_UNUSED(pkt);
ARG_UNUSED(len);
}
static inline u16_t net_pkt_ipv6_hdr_prev(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_hdr_prev(struct net_pkt *pkt,
u16_t offset)
{
ARG_UNUSED(pkt);
ARG_UNUSED(offset);
}
static inline u8_t net_pkt_ipv6_hop_limit(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_hop_limit(struct net_pkt *pkt,
u8_t hop_limit)
{
ARG_UNUSED(pkt);
ARG_UNUSED(hop_limit);
}
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV6_FRAGMENT)
static inline u16_t net_pkt_ipv6_fragment_start(struct net_pkt *pkt)
{
return pkt->ipv6_frag_hdr_start;
}
static inline void net_pkt_set_ipv6_fragment_start(struct net_pkt *pkt,
u16_t start)
{
pkt->ipv6_frag_hdr_start = start;
}
static inline u16_t net_pkt_ipv6_fragment_offset(struct net_pkt *pkt)
{
return pkt->ipv6_fragment_offset;
}
static inline void net_pkt_set_ipv6_fragment_offset(struct net_pkt *pkt,
u16_t offset)
{
pkt->ipv6_fragment_offset = offset;
}
static inline u32_t net_pkt_ipv6_fragment_id(struct net_pkt *pkt)
{
return pkt->ipv6_fragment_id;
}
static inline void net_pkt_set_ipv6_fragment_id(struct net_pkt *pkt,
u32_t id)
{
pkt->ipv6_fragment_id = id;
}
#else /* CONFIG_NET_IPV6_FRAGMENT */
static inline u16_t net_pkt_ipv6_fragment_start(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_fragment_start(struct net_pkt *pkt,
u16_t start)
{
ARG_UNUSED(pkt);
ARG_UNUSED(start);
}
static inline u16_t net_pkt_ipv6_fragment_offset(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_fragment_offset(struct net_pkt *pkt,
u16_t offset)
{
ARG_UNUSED(pkt);
ARG_UNUSED(offset);
}
static inline u32_t net_pkt_ipv6_fragment_id(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline void net_pkt_set_ipv6_fragment_id(struct net_pkt *pkt,
u32_t id)
{
ARG_UNUSED(pkt);
ARG_UNUSED(id);
}
#endif /* CONFIG_NET_IPV6_FRAGMENT */
#if NET_TC_COUNT > 1
static inline u8_t net_pkt_priority(struct net_pkt *pkt)
{
return pkt->priority;
}
static inline void net_pkt_set_priority(struct net_pkt *pkt,
u8_t priority)
{
pkt->priority = priority;
}
#else /* NET_TC_COUNT == 1 */
static inline u8_t net_pkt_priority(struct net_pkt *pkt)
{
return 0;
}
#define net_pkt_set_priority(...)
#endif /* NET_TC_COUNT > 1 */
#if defined(CONFIG_NET_VLAN)
static inline u16_t net_pkt_vlan_tag(struct net_pkt *pkt)
{
return net_eth_vlan_get_vid(pkt->vlan_tci);
}
static inline void net_pkt_set_vlan_tag(struct net_pkt *pkt, u16_t tag)
{
pkt->vlan_tci = net_eth_vlan_set_vid(pkt->vlan_tci, tag);
}
static inline u8_t net_pkt_vlan_priority(struct net_pkt *pkt)
{
return net_eth_vlan_get_pcp(pkt->vlan_tci);
}
static inline void net_pkt_set_vlan_priority(struct net_pkt *pkt,
u8_t priority)
{
pkt->vlan_tci = net_eth_vlan_set_pcp(pkt->vlan_tci, priority);
}
static inline bool net_pkt_vlan_dei(struct net_pkt *pkt)
{
return net_eth_vlan_get_dei(pkt->vlan_tci);
}
static inline void net_pkt_set_vlan_dei(struct net_pkt *pkt, bool dei)
{
pkt->vlan_tci = net_eth_vlan_set_dei(pkt->vlan_tci, dei);
}
static inline void net_pkt_set_vlan_tci(struct net_pkt *pkt, u16_t tci)
{
pkt->vlan_tci = tci;
}
static inline u16_t net_pkt_vlan_tci(struct net_pkt *pkt)
{
return pkt->vlan_tci;
}
#else
static inline u16_t net_pkt_vlan_tag(struct net_pkt *pkt)
{
return NET_VLAN_TAG_UNSPEC;
}
static inline void net_pkt_set_vlan_tag(struct net_pkt *pkt, u16_t tag)
{
ARG_UNUSED(pkt);
ARG_UNUSED(tag);
}
static inline u8_t net_pkt_vlan_priority(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return 0;
}
static inline bool net_pkt_vlan_dei(struct net_pkt *pkt)
{
return false;
}
static inline void net_pkt_set_vlan_dei(struct net_pkt *pkt, bool dei)
{
ARG_UNUSED(pkt);
ARG_UNUSED(dei);
}
static inline u16_t net_pkt_vlan_tci(struct net_pkt *pkt)
{
return NET_VLAN_TAG_UNSPEC; /* assumes priority is 0 */
}
static inline void net_pkt_set_vlan_tci(struct net_pkt *pkt, u16_t tci)
{
ARG_UNUSED(pkt);
ARG_UNUSED(tci);
}
#endif
#if defined(CONFIG_NET_PKT_TIMESTAMP)
static inline struct net_ptp_time *net_pkt_timestamp(struct net_pkt *pkt)
{
return &pkt->timestamp;
}
static inline void net_pkt_set_timestamp(struct net_pkt *pkt,
struct net_ptp_time *timestamp)
{
pkt->timestamp.second = timestamp->second;
pkt->timestamp.nanosecond = timestamp->nanosecond;
}
#else
static inline struct net_ptp_time *net_pkt_timestamp(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return NULL;
}
static inline void net_pkt_set_timestamp(struct net_pkt *pkt,
struct net_ptp_time *timestamp)
{
ARG_UNUSED(pkt);
ARG_UNUSED(timestamp);
}
#endif /* CONFIG_NET_PKT_TIMESTAMP */
static inline size_t net_pkt_get_len(struct net_pkt *pkt)
{
return net_buf_frags_len(pkt->frags);
}
static inline u8_t *net_pkt_data(struct net_pkt *pkt)
{
return pkt->frags->data;
}
static inline u8_t *net_pkt_ip_data(struct net_pkt *pkt)
{
return pkt->frags->data;
}
static inline u8_t *net_pkt_appdata(struct net_pkt *pkt)
{
return pkt->appdata;
}
static inline void net_pkt_set_appdata(struct net_pkt *pkt, u8_t *data)
{
pkt->appdata = data;
}
static inline u16_t net_pkt_appdatalen(struct net_pkt *pkt)
{
return pkt->appdatalen;
}
static inline void net_pkt_set_appdatalen(struct net_pkt *pkt, u16_t len)
{
pkt->appdatalen = len;
}
static inline struct net_linkaddr *net_pkt_lladdr_src(struct net_pkt *pkt)
{
return &pkt->lladdr_src;
}
static inline struct net_linkaddr *net_pkt_lladdr_dst(struct net_pkt *pkt)
{
return &pkt->lladdr_dst;
}
static inline void net_pkt_lladdr_swap(struct net_pkt *pkt)
{
u8_t *addr = net_pkt_lladdr_src(pkt)->addr;
net_pkt_lladdr_src(pkt)->addr = net_pkt_lladdr_dst(pkt)->addr;
net_pkt_lladdr_dst(pkt)->addr = addr;
}
static inline void net_pkt_lladdr_clear(struct net_pkt *pkt)
{
net_pkt_lladdr_src(pkt)->addr = NULL;
net_pkt_lladdr_src(pkt)->len = 0;
}
#if defined(CONFIG_IEEE802154) || defined(CONFIG_IEEE802154_RAW_MODE)
static inline u8_t net_pkt_ieee802154_rssi(struct net_pkt *pkt)
{
return pkt->ieee802154_rssi;
}
static inline void net_pkt_set_ieee802154_rssi(struct net_pkt *pkt,
u8_t rssi)
{
pkt->ieee802154_rssi = rssi;
}
static inline u8_t net_pkt_ieee802154_lqi(struct net_pkt *pkt)
{
return pkt->ieee802154_lqi;
}
static inline void net_pkt_set_ieee802154_lqi(struct net_pkt *pkt,
u8_t lqi)
{
pkt->ieee802154_lqi = lqi;
}
#endif
#if defined(CONFIG_NET_IPV4_AUTO)
static inline bool net_pkt_ipv4_auto(struct net_pkt *pkt)
{
return pkt->ipv4_auto_arp_msg;
}
static inline void net_pkt_set_ipv4_auto(struct net_pkt *pkt,
bool is_auto_arp_msg)
{
pkt->ipv4_auto_arp_msg = is_auto_arp_msg;
}
#else /* CONFIG_NET_IPV4_AUTO */
static inline bool net_pkt_ipv4_auto(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return false;
}
static inline void net_pkt_set_ipv4_auto(struct net_pkt *pkt,
bool is_auto_arp_msg)
{
ARG_UNUSED(pkt);
ARG_UNUSED(is_auto_arp_msg);
}
#endif /* CONFIG_NET_IPV4_AUTO */
#if defined(CONFIG_NET_LLDP)
static inline bool net_pkt_is_lldp(struct net_pkt *pkt)
{
return pkt->lldp_pkt;
}
static inline void net_pkt_set_lldp(struct net_pkt *pkt, bool is_lldp)
{
pkt->lldp_pkt = is_lldp;
}
#else
static inline bool net_pkt_is_lldp(struct net_pkt *pkt)
{
ARG_UNUSED(pkt);
return false;
}
static inline void net_pkt_set_lldp(struct net_pkt *pkt, bool is_lldp)
{
ARG_UNUSED(pkt);
ARG_UNUSED(is_lldp);
}
#endif /* CONFIG_NET_LLDP */
#define NET_IPV6_HDR(pkt) ((struct net_ipv6_hdr *)net_pkt_ip_data(pkt))
#define NET_IPV4_HDR(pkt) ((struct net_ipv4_hdr *)net_pkt_ip_data(pkt))
static inline void net_pkt_set_src_ipv6_addr(struct net_pkt *pkt)
{
net_if_ipv6_select_src_addr(net_context_get_iface(
net_pkt_context(pkt)),
&NET_IPV6_HDR(pkt)->src);
}
static inline void net_pkt_set_overwrite(struct net_pkt *pkt, bool overwrite)
{
pkt->overwrite = overwrite;
}
static inline bool net_pkt_is_being_overwritten(struct net_pkt *pkt)
{
return pkt->overwrite;
}
/* @endcond */
/**
* @brief Create a net_pkt slab
*
* A net_pkt slab is used to store meta-information about
* network packets. It must be coupled with a data fragment pool
* (:c:macro:`NET_PKT_DATA_POOL_DEFINE`) used to store the actual
* packet data. The macro can be used by an application to define
* additional custom per-context TX packet slabs (see
* :c:func:`net_context_setup_pools`).
*
* @param name Name of the slab.
* @param count Number of net_pkt in this slab.
*/
#define NET_PKT_SLAB_DEFINE(name, count) \
K_MEM_SLAB_DEFINE(name, sizeof(struct net_pkt), count, 4)
/* Backward compatibility macro */
#define NET_PKT_TX_SLAB_DEFINE(name, count) NET_PKT_SLAB_DEFINE(name, count)
/**
* @brief Create a data fragment net_buf pool
*
* A net_buf pool is used to store actual data for
* network packets. It must be coupled with a net_pkt slab
* (:c:macro:`NET_PKT_SLAB_DEFINE`) used to store the packet
* meta-information. The macro can be used by an application to
* define additional custom per-context TX packet pools (see
* :c:func:`net_context_setup_pools`).
*
* @param name Name of the pool.
* @param count Number of net_buf in this pool.
*/
#define NET_PKT_DATA_POOL_DEFINE(name, count) \
NET_BUF_POOL_DEFINE(name, count, CONFIG_NET_BUF_DATA_SIZE, \
CONFIG_NET_BUF_USER_DATA_SIZE, NULL)
/** @cond INTERNAL_HIDDEN */
#if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC) || \
(CONFIG_NET_PKT_LOG_LEVEL >= LOG_LEVEL_DBG)
#define NET_PKT_DEBUG_ENABLED
#endif
#if defined(NET_PKT_DEBUG_ENABLED)
/* Debug versions of the net_pkt functions that are used when tracking
* buffer usage.
*/
struct net_pkt *net_pkt_get_reserve_debug(struct k_mem_slab *slab,
s32_t timeout,
const char *caller,
int line);
#define net_pkt_get_reserve(slab, timeout) \
net_pkt_get_reserve_debug(slab, timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_reserve_data_debug(struct net_buf_pool *pool,
s32_t timeout,
const char *caller,
int line);
#define net_pkt_get_reserve_data(pool, timeout) \
net_pkt_get_reserve_data_debug(pool, timeout, __func__, __LINE__)
struct net_pkt *net_pkt_get_rx_debug(struct net_context *context,
s32_t timeout,
const char *caller, int line);
#define net_pkt_get_rx(context, timeout) \
net_pkt_get_rx_debug(context, timeout, __func__, __LINE__)
struct net_pkt *net_pkt_get_tx_debug(struct net_context *context,
s32_t timeout,
const char *caller, int line);
#define net_pkt_get_tx(context, timeout) \
net_pkt_get_tx_debug(context, timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_data_debug(struct net_context *context,
s32_t timeout,
const char *caller, int line);
#define net_pkt_get_data(context, timeout) \
net_pkt_get_data_debug(context, timeout, __func__, __LINE__)
struct net_pkt *net_pkt_get_reserve_rx_debug(s32_t timeout,
const char *caller, int line);
#define net_pkt_get_reserve_rx(timeout) \
net_pkt_get_reserve_rx_debug(timeout, __func__, __LINE__)
struct net_pkt *net_pkt_get_reserve_tx_debug(s32_t timeout,
const char *caller, int line);
#define net_pkt_get_reserve_tx(timeout) \
net_pkt_get_reserve_tx_debug(timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_reserve_rx_data_debug(s32_t timeout,
const char *caller,
int line);
#define net_pkt_get_reserve_rx_data(timeout) \
net_pkt_get_reserve_rx_data_debug(timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_reserve_tx_data_debug(s32_t timeout,
const char *caller,
int line);
#define net_pkt_get_reserve_tx_data(timeout) \
net_pkt_get_reserve_tx_data_debug(timeout, __func__, __LINE__)
struct net_buf *net_pkt_get_frag_debug(struct net_pkt *pkt,
s32_t timeout,
const char *caller, int line);
#define net_pkt_get_frag(pkt, timeout) \
net_pkt_get_frag_debug(pkt, timeout, __func__, __LINE__)
void net_pkt_unref_debug(struct net_pkt *pkt, const char *caller, int line);
#define net_pkt_unref(pkt) net_pkt_unref_debug(pkt, __func__, __LINE__)
struct net_pkt *net_pkt_ref_debug(struct net_pkt *pkt, const char *caller,
int line);
#define net_pkt_ref(pkt) net_pkt_ref_debug(pkt, __func__, __LINE__)
struct net_buf *net_pkt_frag_ref_debug(struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_ref(frag) net_pkt_frag_ref_debug(frag, __func__, __LINE__)
void net_pkt_frag_unref_debug(struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_unref(frag) \
net_pkt_frag_unref_debug(frag, __func__, __LINE__)
struct net_buf *net_pkt_frag_del_debug(struct net_pkt *pkt,
struct net_buf *parent,
struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_del(pkt, parent, frag) \
net_pkt_frag_del_debug(pkt, parent, frag, __func__, __LINE__)
void net_pkt_frag_add_debug(struct net_pkt *pkt, struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_add(pkt, frag) \
net_pkt_frag_add_debug(pkt, frag, __func__, __LINE__)
void net_pkt_frag_insert_debug(struct net_pkt *pkt, struct net_buf *frag,
const char *caller, int line);
#define net_pkt_frag_insert(pkt, frag) \
net_pkt_frag_insert_debug(pkt, frag, __func__, __LINE__)
#endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC ||
* CONFIG_NET_PKT_LOG_LEVEL >= LOG_LEVEL_DBG
*/
/** @endcond */
/**
* @brief Print fragment list and the fragment sizes
*
* @details Only available if debugging is activated.
*
* @param pkt Network pkt.
*/
#if defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_print_frags(struct net_pkt *pkt);
#else
#define net_pkt_print_frags(pkt)
#endif
/**
* @brief Get packet from the given packet slab.
*
* @details Get network packet from the specific packet slab.
*
* @param slab Network packet slab.
* @param timeout Affects the action taken should the net pkt slab be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network packet if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_get_reserve(struct k_mem_slab *slab,
s32_t timeout);
#endif
/**
* @brief Get packet from the RX packet slab.
*
* @details Get network packet from RX packet slab. You must have
* network context before able to use this function.
*
* @param context Network context that will be related to this packet.
* @param timeout Affects the action taken should the net pkt slab be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network packet if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_get_rx(struct net_context *context,
s32_t timeout);
#endif
/**
* @brief Get packet from the TX packets slab.
*
* @details Get network packet from TX packet slab. You must have
* network context before able to use this function.
*
* @param context Network context that will be related to
* this packet.
* @param timeout Affects the action taken should the net pkt slab be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network packet if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_get_tx(struct net_context *context,
s32_t timeout);
#endif
/**
* @brief Get buffer from the DATA buffers pool.
*
* @details Get network buffer from DATA buffer pool. You must have
* network context before able to use this function.
*
* @param context Network context that will be related to
* this buffer.
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network buffer if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_get_data(struct net_context *context,
s32_t timeout);
#endif
/**
* @brief Get RX packet from slab
*
* @details Normally this version is not useful for applications
* but is mainly used by network fragmentation code.
*
* @param timeout Affects the action taken should the net pkt slab be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network packet if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_get_reserve_rx(s32_t timeout);
#endif
/**
* @brief Get TX packet from slab
*
* @details Normally this version is not useful for applications
* but is mainly used by network fragmentation code.
*
* @param timeout Affects the action taken should the net pkt slab be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network packet if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_get_reserve_tx(s32_t timeout);
#endif
/**
* @brief Get RX DATA buffer from pool.
* Normally you should use net_pkt_get_frag() instead.
*
* @details Normally this version is not useful for applications
* but is mainly used by network fragmentation code.
*
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network buffer if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_get_reserve_rx_data(s32_t timeout);
#endif
/**
* @brief Get TX DATA buffer from pool.
* Normally you should use net_pkt_get_frag() instead.
*
* @details Normally this version is not useful for applications
* but is mainly used by network fragmentation code.
*
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network buffer if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_get_reserve_tx_data(s32_t timeout);
#endif
/**
* @brief Get a data fragment that might be from user specific
* buffer pool or from global DATA pool.
*
* @param pkt Network packet.
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Network buffer if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_get_frag(struct net_pkt *pkt, s32_t timeout);
#endif
/**
* @brief Place packet back into the available packets slab
*
* @details Releases the packet to other use. This needs to be
* called by application after it has finished with the packet.
*
* @param pkt Network packet to release.
*
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_unref(struct net_pkt *pkt);
#endif
/**
* @brief Increase the packet ref count
*
* @details Mark the packet to be used still.
*
* @param pkt Network packet to ref.
*
* @return Network packet if successful, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_ref(struct net_pkt *pkt);
#endif
/**
* @brief Increase the packet fragment ref count
*
* @details Mark the fragment to be used still.
*
* @param frag Network fragment to ref.
*
* @return a pointer on the referenced Network fragment.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_frag_ref(struct net_buf *frag);
#endif
/**
* @brief Decrease the packet fragment ref count
*
* @param frag Network fragment to unref.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_frag_unref(struct net_buf *frag);
#endif
/**
* @brief Delete existing fragment from a packet
*
* @param pkt Network packet from which frag belongs to.
* @param parent parent fragment of frag, or NULL if none.
* @param frag Fragment to delete.
*
* @return Pointer to the following fragment, or NULL if it had no
* further fragments.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_buf *net_pkt_frag_del(struct net_pkt *pkt,
struct net_buf *parent,
struct net_buf *frag);
#endif
/**
* @brief Add a fragment to a packet at the end of its fragment list
*
* @param pkt pkt Network packet where to add the fragment
* @param frag Fragment to add
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_frag_add(struct net_pkt *pkt, struct net_buf *frag);
#endif
/**
* @brief Insert a fragment to a packet at the beginning of its fragment list
*
* @param pkt pkt Network packet where to insert the fragment
* @param frag Fragment to insert
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
void net_pkt_frag_insert(struct net_pkt *pkt, struct net_buf *frag);
#endif
/**
* @brief Copy len bytes from src starting from offset to dst
*
* This routine assumes that dst is formed of one fragment with enough space
* to store @a len bytes starting from offset at src.
*
* @param dst Destination buffer
* @param src Source buffer that may be fragmented
* @param offset Starting point to copy from
* @param len Number of bytes to copy
* @return 0 on success
* @return -ENOMEM on error
*/
int net_frag_linear_copy(struct net_buf *dst, struct net_buf *src,
u16_t offset, u16_t len);
/**
* @brief Compact the fragment list of a packet.
*
* @details After this there is no more any free space in individual fragments.
* @param pkt Network packet.
*
* @return True if compact success, False otherwise.
*/
bool net_pkt_compact(struct net_pkt *pkt);
/**
* @brief Append data to fragment list of a packet
*
* @details Append data to last fragment. If there is not enough space in
* last fragment then more data fragments will be added, unless there are
* no free fragments and timeout occurs.
*
* @param pkt Network packet.
* @param len Total length of input data
* @param data Data to be added
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Length of data actually added. This may be less than input
* length if other timeout than K_FOREVER was used, and there
* were no free fragments in a pool to accommodate all data.
*/
u16_t net_pkt_append(struct net_pkt *pkt, u16_t len, const u8_t *data,
s32_t timeout);
/**
* @brief Append all data to fragment list of a packet (or fail)
*
* @details Append data to last fragment. If there is not enough space in
* last fragment then more data fragments will be added. Return unsuccessful
* status if there are no free fragments to accommodate all data and timeout
* occurs.
*
* @param pkt Network packet.
* @param len Total length of input data
* @param data Data to be added
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return True if all the data is placed at end of fragment list,
* false otherwise (in which case packet may contain incomplete
* input data).
*/
static inline bool net_pkt_append_all(struct net_pkt *pkt, u16_t len,
const u8_t *data, s32_t timeout)
{
return net_pkt_append(pkt, len, data, timeout) == len;
}
/**
* @brief Append u8_t data to last fragment in fragment list of a packet
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Caller has to take care of endianness if needed.
*
* @param pkt Network packet.
* @param data Data to be added
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input
* data in the process of placing into fragments).
*/
static inline bool net_pkt_append_u8(struct net_pkt *pkt, u8_t data)
{
return net_pkt_append_all(pkt, 1, &data, K_FOREVER);
}
/**
* @brief Append u16_t data to last fragment in fragment list of a packet
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Caller has to take care of endianness if needed.
*
* @param pkt Network packet.
* @param data Data to be added
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input data
* in the process of placing into fragments).
*/
static inline bool net_pkt_append_be16(struct net_pkt *pkt, u16_t data)
{
u16_t value = sys_cpu_to_be16(data);
return net_pkt_append_all(pkt, sizeof(u16_t), (u8_t *)&value,
K_FOREVER);
}
/**
* @brief Append u32_t data to last fragment in fragment list of a packet
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Caller has to take care of endianness if needed.
*
* @param pkt Network packet.
* @param data Data to be added
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input data
* in the process of placing into fragments).
*/
static inline bool net_pkt_append_be32(struct net_pkt *pkt, u32_t data)
{
u32_t value = sys_cpu_to_be32(data);
return net_pkt_append_all(pkt, sizeof(u32_t), (u8_t *)&value,
K_FOREVER);
}
/**
* @brief Append u32_t data to last fragment in fragment list
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Convert data to LE.
*
* @param pkt Network packet fragment list.
* @param data Data to be added
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input data
* in the process of placing into fragments).
*/
static inline bool net_pkt_append_le32(struct net_pkt *pkt, u32_t data)
{
u32_t value = sys_cpu_to_le32(data);
return net_pkt_append_all(pkt, sizeof(u32_t), (u8_t *)&value,
K_FOREVER);
}
/**
* @brief Append u8_t data to last fragment in fragment list of a packet
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Caller has to take care of endianness if needed.
*
* @param pkt Network packet.
* @param data Data to be added
* @param timeout Timeout for buffer allocations
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input
* data in the process of placing into fragments).
*/
static inline bool net_pkt_append_u8_timeout(struct net_pkt *pkt, u8_t data,
s32_t timeout)
{
return net_pkt_append_all(pkt, 1, &data, timeout);
}
/**
* @brief Append u16_t data to last fragment in fragment list of a packet
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Caller has to take care of endianness if needed.
*
* @param pkt Network packet.
* @param data Data to be added
* @param timeout Timeout for buffer allocations
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input data
* in the process of placing into fragments).
*/
static inline bool net_pkt_append_be16_timeout(struct net_pkt *pkt,
u16_t data,
s32_t timeout)
{
u16_t value = sys_cpu_to_be16(data);
return net_pkt_append_all(pkt, sizeof(u16_t), (u8_t *)&value,
timeout);
}
/**
* @brief Append u32_t data to last fragment in fragment list of a packet
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Caller has to take care of endianness if needed.
*
* @param pkt Network packet.
* @param data Data to be added
* @param timeout Timeout for buffer allocations
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input data
* in the process of placing into fragments).
*/
static inline bool net_pkt_append_be32_timeout(struct net_pkt *pkt,
u32_t data,
s32_t timeout)
{
u32_t value = sys_cpu_to_be32(data);
return net_pkt_append_all(pkt, sizeof(u32_t), (u8_t *)&value,
timeout);
}
/**
* @brief Append u32_t data to last fragment in fragment list
*
* @details Append data to last fragment. If there is not enough space in last
* fragment then new data fragment will be created and will be added to
* fragment list. Convert data to LE.
*
* @param pkt Network packet fragment list.
* @param data Data to be added
* @param timeout Timeout for buffer allocations
*
* @return True if all the data is placed at end of fragment list,
* False otherwise (In-case of false pkt might contain input data
* in the process of placing into fragments).
*/
static inline bool net_pkt_append_le32_timeout(struct net_pkt *pkt,
u32_t data,
s32_t timeout)
{
u32_t value = sys_cpu_to_le32(data);
return net_pkt_append_all(pkt, sizeof(u32_t), (u8_t *)&value,
timeout);
}
/**
* @brief Get data from buffer
*
* @details Get N number of bytes starting from fragment's offset. If the total
* length of data is placed in multiple fragments, this function will read from
* all fragments until it reaches N number of bytes. Caller has to take care of
* endianness if needed.
*
* @param frag Network buffer fragment.
* @param offset Offset of input buffer.
* @param pos Pointer to position of offset after reading n number of bytes,
* this is with respect to return buffer(fragment).
* @param len Total length of data to be read.
* @param data Data will be copied here.
*
* @return Pointer to the fragment or
* NULL and pos is 0 after successful read,
* NULL and pos is 0xffff otherwise.
*/
struct net_buf *net_frag_read(struct net_buf *frag, u16_t offset,
u16_t *pos, u16_t len, u8_t *data);
/**
* @brief Skip N number of bytes while reading buffer
*
* @details Skip N number of bytes starting from fragment's offset. If the total
* length of data is placed in multiple fragments, this function will skip from
* all fragments until it reaches N number of bytes. This function is useful
* when unwanted data (e.g. not supported data in message) is part
* of fragment and we want to skip it.
*
* @param frag Network buffer fragment.
* @param offset Offset of input buffer.
* @param pos Pointer to position of offset after reading n number of bytes,
* this is with respect to return buffer(fragment).
* @param len Total length of data to be read.
*
* @return Pointer to the fragment or
* NULL and pos is 0 after successful skip,
* NULL and pos is 0xffff otherwise.
*/
static inline struct net_buf *net_frag_skip(struct net_buf *frag,
u16_t offset,
u16_t *pos, u16_t len)
{
return net_frag_read(frag, offset, pos, len, NULL);
}
/**
* @brief Get a byte value from fragmented buffer
*
* @param frag Network buffer fragment.
* @param offset Offset of input buffer.
* @param pos Pointer to position of offset after reading 2 bytes,
* this is with respect to return buffer(fragment).
* @param value Value is returned
*
* @return Pointer to fragment after successful read,
* NULL otherwise (if pos is 0, NULL is not a failure case).
*/
static inline struct net_buf *net_frag_read_u8(struct net_buf *frag,
u16_t offset,
u16_t *pos,
u8_t *value)
{
return net_frag_read(frag, offset, pos, 1, value);
}
/**
* @brief Get 16 bit big endian value from fragmented buffer
*
* @param frag Network buffer fragment.
* @param offset Offset of input buffer.
* @param pos Pointer to position of offset after reading 2 bytes,
* this is with respect to return buffer(fragment).
* @param value Value is returned
*
* @return Pointer to fragment after successful read,
* NULL otherwise (if pos is 0, NULL is not a failure case).
*/
struct net_buf *net_frag_read_be16(struct net_buf *frag, u16_t offset,
u16_t *pos, u16_t *value);
/**
* @brief Get 32 bit big endian value from fragmented buffer
*
* @param frag Network buffer fragment.
* @param offset Offset of input buffer.
* @param pos Pointer to position of offset after reading 4 bytes,
* this is with respect to return buffer(fragment).
* @param value Value is returned
*
* @return Pointer to fragment after successful read,
* NULL otherwise (if pos is 0, NULL is not a failure case).
*/
struct net_buf *net_frag_read_be32(struct net_buf *frag, u16_t offset,
u16_t *pos, u32_t *value);
/**
* @brief Write data to an arbitrary offset in fragments list of a packet.
*
* @details Write data to an arbitrary offset in a series of fragments.
* Offset is based on fragment 'size' and calculates from input fragment
* starting position.
*
* Size in this context refers the fragment full size without link layer header
* part. The fragment might have user written data in it, the amount of such
* data is stored in frag->len variable (the frag->len is always <= frag->size).
* If using this API, the tailroom in the fragments will be taken into use.
*
* If offset is more than already allocated length in fragment, then empty space
* or extra empty fragments is created to reach proper offset.
* If there is any data present on input fragment offset, then it will be
* 'overwritten'. Use net_pkt_insert() api if you don't want to overwrite.
*
* Offset is calculated from starting point of data area in input fragment.
* e.g. Pkt(Tx/Rx) - Frag1 - Frag2 - Frag3 - Frag4
* (Assume FRAG DATA SIZE is 100 bytes after link layer header)
*
* 1) net_pkt_write(pkt, frag2, 20, &pos, 20, data, K_FOREVER)
* In this case write starts from "frag2->data + 20",
* returns frag2, pos = 40
*
* 2) net_pkt_write(pkt, frag1, 150, &pos, 60, data, K_FOREVER)
* In this case write starts from "frag2->data + 50"
* returns frag3, pos = 10
*
* 3) net_pkt_write(pkt, frag1, 350, &pos, 30, data, K_FOREVER)
* In this case write starts from "frag4->data + 50"
* returns frag4, pos = 80
*
* 4) net_pkt_write(pkt, frag2, 110, &pos, 90, data, K_FOREVER)
* In this case write starts from "frag3->data + 10"
* returns frag4, pos = 0
*
* 5) net_pkt_write(pkt, frag4, 110, &pos, 20, data, K_FOREVER)
* In this case write creates new data fragment and starts from
* "frag5->data + 10"
* returns frag5, pos = 30
*
* If input argument frag is NULL, it will create new data fragment
* and append at the end of fragment list.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset
* @param pos Position of offset after write completed (this will be
* relative to return fragment)
* @param len Length of the data to be written.
* @param data Data to be written
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return Pointer to the fragment and position (*pos) where write ended,
* NULL and pos is 0xffff otherwise.
*/
struct net_buf *net_pkt_write(struct net_pkt *pkt, struct net_buf *frag,
u16_t offset, u16_t *pos, u16_t len,
u8_t *data, s32_t timeout);
/* Write u8_t data to an arbitrary offset in fragment. */
static inline struct net_buf *net_pkt_write_u8(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t *pos,
u8_t data)
{
return net_pkt_write(pkt, frag, offset, pos, sizeof(u8_t),
&data, K_FOREVER);
}
/* Write u16_t big endian value to an arbitrary offset in fragment. */
static inline struct net_buf *net_pkt_write_be16(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t *pos,
u16_t data)
{
u16_t value = htons(data);
return net_pkt_write(pkt, frag, offset, pos, sizeof(u16_t),
(u8_t *)&value, K_FOREVER);
}
/* Write u32_t big endian value to an arbitrary offset in fragment. */
static inline struct net_buf *net_pkt_write_be32(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t *pos,
u32_t data)
{
u32_t value = htonl(data);
return net_pkt_write(pkt, frag, offset, pos, sizeof(u32_t),
(u8_t *)&value, K_FOREVER);
}
/* Write u8_t data to an arbitrary offset in fragment. */
static inline struct net_buf *net_pkt_write_u8_timeout(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t *pos,
u8_t data,
s32_t timeout)
{
return net_pkt_write(pkt, frag, offset, pos, sizeof(u8_t),
&data, timeout);
}
/* Write u16_t big endian value to an arbitrary offset in fragment. */
static inline struct net_buf *net_pkt_write_be16_timeout(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t *pos,
u16_t data,
s32_t timeout)
{
u16_t value = htons(data);
return net_pkt_write(pkt, frag, offset, pos, sizeof(u16_t),
(u8_t *)&value, timeout);
}
/* Write u32_t big endian value to an arbitrary offset in fragment. */
static inline struct net_buf *net_pkt_write_be32_timeout(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t *pos,
u32_t data,
s32_t timeout)
{
u32_t value = htonl(data);
return net_pkt_write(pkt, frag, offset, pos, sizeof(u32_t),
(u8_t *)&value, timeout);
}
/**
* @brief Insert data at an arbitrary offset in a series of fragments.
*
* @details Insert data at an arbitrary offset in a series of fragments. Offset
* is based on fragment length (only user written data length, any tailroom
* in fragments does not come to consideration unlike net_pkt_write()) and
* calculates from input fragment starting position.
* If the data pointer is NULL, insert a sequence of zeros with the given
* length.
*
* Offset examples can be considered from net_pkt_write() api.
* If the offset is more than already allocated fragments length then it is an
* error case.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset of fragment where insertion will start.
* @param len Length of the data to be inserted.
* @param data Data to be inserted, can be NULL.
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return True on success, False otherwise.
*/
bool net_pkt_insert(struct net_pkt *pkt, struct net_buf *frag,
u16_t offset, u16_t len, u8_t *data,
s32_t timeout);
/**
* @brief Insert u8_t data at an arbitrary offset in a series of fragments.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset of fragment where insertion will start.
* @param data Data to be inserted, can be NULL.
*
* @return True on success, False otherwise.
*/
static inline bool net_pkt_insert_u8(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u8_t data)
{
return net_pkt_insert(pkt, frag, offset, sizeof(u8_t), &data,
K_FOREVER);
}
/**
* @brief Insert u16_t data at an arbitrary offset in a series of fragments.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset of fragment where insertion will start.
* @param data Data to be inserted, can be NULL.
*
* @return True on success, False otherwise.
*/
static inline bool net_pkt_insert_be16(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t data)
{
u16_t value = htons(data);
return net_pkt_insert(pkt, frag, offset, sizeof(u16_t),
(u8_t *)&value, K_FOREVER);
}
/**
* @brief Insert u32_t data at an arbitrary offset in a series of fragments.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset of fragment where insertion will start.
* @param data Data to be inserted, can be NULL.
*
* @return True on success, False otherwise.
*/
static inline bool net_pkt_insert_be32(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u32_t data)
{
u32_t value = htonl(data);
return net_pkt_insert(pkt, frag, offset, sizeof(u32_t),
(u8_t *)&value, K_FOREVER);
}
/**
* @brief Insert u8_t data at an arbitrary offset in a series of fragments.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset of fragment where insertion will start.
* @param data Data to be inserted, can be NULL.
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return True on success, False otherwise.
*/
static inline bool net_pkt_insert_u8_timeout(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u8_t data,
s32_t timeout)
{
return net_pkt_insert(pkt, frag, offset, sizeof(u8_t), &data,
timeout);
}
/**
* @brief Insert u16_t data at an arbitrary offset in a series of fragments.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset of fragment where insertion will start.
* @param data Data to be inserted, can be NULL.
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return True on success, False otherwise.
*/
static inline bool net_pkt_insert_be16_timeout(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u16_t data,
s32_t timeout)
{
u16_t value = htons(data);
return net_pkt_insert(pkt, frag, offset, sizeof(u16_t),
(u8_t *)&value, timeout);
}
/**
* @brief Insert u32_t data at an arbitrary offset in a series of fragments.
*
* @param pkt Network packet.
* @param frag Network buffer fragment.
* @param offset Offset of fragment where insertion will start.
* @param data Data to be inserted, can be NULL.
* @param timeout Affects the action taken should the net buf pool be empty.
* If K_NO_WAIT, then return immediately. If K_FOREVER, then
* wait as long as necessary. Otherwise, wait up to the specified
* number of milliseconds before timing out.
*
* @return True on success, False otherwise.
*/
static inline bool net_pkt_insert_be32_timeout(struct net_pkt *pkt,
struct net_buf *frag,
u16_t offset,
u32_t data,
s32_t timeout)
{
u32_t value = htonl(data);
return net_pkt_insert(pkt, frag, offset, sizeof(u32_t),
(u8_t *)&value, timeout);
}
/**
* @brief Return the fragment and offset within it according to network
* packet offset.
*
* @details This is typically used to get the protocol header pointer when
* we know the offset. According to this information, the corresponding fragment
* and position within that fragment is returned.
*
* @param pkt Network packet
* @param offset Offset of desired location in network packet. For example, if
* we want to know where UDP header is located after the IPv6 header,
* the offset could have a value of sizeof(struct net_ipv6_hdr). Note that this
* is a simplified example that does not take into account the possible IPv6
* extension headers.
* @param pos Pointer to position within result fragment corresponding to
* offset param. For example, if the IPv6 header is split between two fragments,
* then if we want to know the start of UDP header, the returned pos variable
* would indicate how many bytes from second fragment the UDP header starts.
*
* @return Pointer to the fragment where the the offset is located or
* NULL if there is not enough bytes in the packet
*/
struct net_buf *net_frag_get_pos(struct net_pkt *pkt,
u16_t offset,
u16_t *pos);
/**
* @brief Get information about predefined RX, TX and DATA pools.
*
* @param rx Pointer to RX pool is returned.
* @param tx Pointer to TX pool is returned.
* @param rx_data Pointer to RX DATA pool is returned.
* @param tx_data Pointer to TX DATA pool is returned.
*/
void net_pkt_get_info(struct k_mem_slab **rx,
struct k_mem_slab **tx,
struct net_buf_pool **rx_data,
struct net_buf_pool **tx_data);
/** @cond INTERNAL_HIDDEN */
#if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC)
/**
* @brief Debug helper to print out the buffer allocations
*/
void net_pkt_print(void);
typedef void (*net_pkt_allocs_cb_t)(struct net_pkt *pkt,
struct net_buf *buf,
const char *func_alloc,
int line_alloc,
const char *func_free,
int line_free,
bool in_use,
void *user_data);
void net_pkt_allocs_foreach(net_pkt_allocs_cb_t cb, void *user_data);
const char *net_pkt_slab2str(struct k_mem_slab *slab);
const char *net_pkt_pool2str(struct net_buf_pool *pool);
#else
#define net_pkt_print(...)
#endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC */
/* New allocator, and API are defined below.
* This will be simpler when time will come to get rid of former API above.
*/
#if defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc_debug(s32_t timeout,
const char *caller, int line);
#define net_pkt_alloc(_timeout) \
net_pkt_alloc_debug(_timeout, __func__, __LINE__)
struct net_pkt *net_pkt_rx_alloc_debug(s32_t timeout,
const char *caller, int line);
#define net_pkt_rx_alloc(_timeout) \
net_pkt_rx_alloc_debug(_timeout, __func__, __LINE__)
struct net_pkt *net_pkt_alloc_on_iface_debug(struct net_if *iface,
s32_t timeout,
const char *caller,
int line);
#define net_pkt_alloc_on_iface(_iface, _timeout) \
net_pkt_alloc_on_iface_debug(_iface, _timeout, __func__, __LINE__)
struct net_pkt *net_pkt_rx_alloc_on_iface_debug(struct net_if *iface,
s32_t timeout,
const char *caller,
int line);
#define net_pkt_rx_alloc_on_iface(_iface, _timeout) \
net_pkt_rx_alloc_on_iface_debug(_iface, _timeout, \
__func__, __LINE__)
int net_pkt_alloc_buffer_debug(struct net_pkt *pkt,
size_t size,
enum net_ip_protocol proto,
s32_t timeout,
const char *caller, int line);
#define net_pkt_alloc_buffer(_pkt, _size, _proto, _timeout) \
net_pkt_alloc_buffer_debug(_pkt, _size, _proto, _timeout, \
__func__, __LINE__)
struct net_pkt *net_pkt_alloc_with_buffer_debug(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
s32_t timeout,
const char *caller,
int line);
#define net_pkt_alloc_with_buffer(_iface, _size, _family, \
_proto, _timeout) \
net_pkt_alloc_with_buffer_debug(_iface, _size, _family, \
_proto, _timeout, \
__func__, __LINE__)
struct net_pkt *net_pkt_rx_alloc_with_buffer_debug(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
s32_t timeout,
const char *caller,
int line);
#define net_pkt_rx_alloc_with_buffer(_iface, _size, _family, \
_proto, _timeout) \
net_pkt_rx_alloc_with_buffer_debug(_iface, _size, _family, \
_proto, _timeout, \
__func__, __LINE__)
#endif
/** @endcond */
/**
* @brief Allocate an initialized net_pkt
*
* Note: for the time being, 2 pools are used. One for TX and one for RX.
* This allocator has to be used for TX.
*
* @param timeout Maximum time in milliseconds to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc(s32_t timeout);
#endif
/**
* @brief Allocate an initialized net_pkt for RX
*
* Note: for the time being, 2 pools are used. One for TX and one for RX.
* This allocator has to be used for RX.
*
* @param timeout Maximum time in milliseconds to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_rx_alloc(s32_t timeout);
#endif
/**
* @brief Allocate a network packet for a specific network interface.
*
* @param iface The network interface the packet is supposed to go through.
* @param timeout Maximum time in milliseconds to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc_on_iface(struct net_if *iface, s32_t timeout);
/* Same as above but specifically for RX packet */
struct net_pkt *net_pkt_rx_alloc_on_iface(struct net_if *iface, s32_t timeout);
#endif
/**
* @brief Allocate buffer for a net_pkt
*
* Note: such allocator will take into account space necessary for headers,
* MTU, and existing buffer (if any). Beware that, due to all these
* criteria, the allocated size might be smaller/bigger than requested
* one.
*
* @param pkt The network packet requiring buffer to be allocated.
* @param size The size of buffer being requested.
* @param proto The IP protocol type (can be 0 for none).
* @param timeout Maximum time in milliseconds to wait for an allocation.
*
* @return 0 on success, negative errno code otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
int net_pkt_alloc_buffer(struct net_pkt *pkt,
size_t size,
enum net_ip_protocol proto,
s32_t timeout);
#endif
/**
* @brief Allocate a network packet and buffer at once
*
* @param iface The network interface the packet is supposed to go through.
* @param size The size of buffer being requested.
* @param family The family to which the packet belongs to.
* @param proto The IP protocol type (can be 0 for none).
* @param timeout Maximum time in milliseconds to wait for an allocation.
*
* @return a pointer to a newly allocated net_pkt on success, NULL otherwise.
*/
#if !defined(NET_PKT_DEBUG_ENABLED)
struct net_pkt *net_pkt_alloc_with_buffer(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
s32_t timeout);
/* Same as above but specifically for RX packet */
struct net_pkt *net_pkt_rx_alloc_with_buffer(struct net_if *iface,
size_t size,
sa_family_t family,
enum net_ip_protocol proto,
s32_t timeout);
#endif
/**
* @brief Append a buffer in packet
*
* @param pkt Network packet where to append the buffer
* @param buffer Buffer to append
*/
void net_pkt_append_buffer(struct net_pkt *pkt, struct net_buf *buffer);
/**
* @brief Get available buffer space from a pkt
*
* @param pkt The net_pkt which buffer availability should be evaluated
*
* @return the amount of buffer available
*/
size_t net_pkt_available_buffer(struct net_pkt *pkt);
/**
* @brief Get available buffer space for payload from a pkt
*
* Note: Unlike net_pkt_available_buffer(), this will take into account the
* headers space.
*
* @param pkt The net_pkt which payload buffer availability should
* be evaluated
* @param proto The IP protocol type (can be 0 for none).
*
* @return the amount of buffer available for payload
*/
size_t net_pkt_available_payload_buffer(struct net_pkt *pkt,
enum net_ip_protocol proto);
/**
* @brief Trim net_pkt buffer
*
* Note: This will basically check for unused net_buf buffer and
* deallocates them relevantly
*
* @param pkt The net_pkt which buffer will be trimmed
*/
void net_pkt_trim_buffer(struct net_pkt *pkt);
/**
* @brief Initialize net_pkt cursor
*
* Note: This will initialize the net_pkt cursor from its buffer.
*
* @param pkt The net_pkt which cursor is going to be initialized
*/
void net_pkt_cursor_init(struct net_pkt *pkt);
/**
* @brief Backup net_pkt cursor
*
* @param pkt The net_pkt which cursor is going to be backed up
* @param backup The cursor where to backup net_pkt cursor
*/
static inline void net_pkt_cursor_backup(struct net_pkt *pkt,
struct net_pkt_cursor *backup)
{
backup->buf = pkt->cursor.buf;
backup->pos = pkt->cursor.pos;
}
/**
* @brief Restore net_pkt cursor from a backup
*
* @param pkt The net_pkt which cursor is going to be restored
* @param backup The cursor from where to restore net_pkt cursor
*/
static inline void net_pkt_cursor_restore(struct net_pkt *pkt,
struct net_pkt_cursor *backup)
{
pkt->cursor.buf = backup->buf;
pkt->cursor.pos = backup->pos;
}
/**
* @brief Returns current position of the cursor
*
* @param pkt The net_pkt which cursor's position is going to be returned
*
* @return cursor's position
*/
static inline void *net_pkt_cursor_get_pos(struct net_pkt *pkt)
{
return pkt->cursor.pos;
}
/**
* @brief Skip some data from a net_pkt
*
* Note: net_pkt's cursor should be properly initialized
* Cursor will be updated according to parameter.
* Depending on the value of pkt->overwrite bit, this function
* will affect the buffer length or not: if it's 0, skip will
* actually apply the move in the buffer as it had written in it.
*
* @param pkt The net_pkt which cursor will be updated to skip given
* amount of data from the buffer.
* @param length Amount of data to skip in the buffer
*
* @return 0 in success, negative errno code otherwise.
*/
int net_pkt_skip(struct net_pkt *pkt, size_t length);
/**
* @brief Memset some data in a net_pkt
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip.
* Cursor will be updated according to parameter.
*
* @param pkt The net_pkt which cursor will be updated to skip given
* amount of data from the buffer.
* @param byte The byte to write in memory
* @param length Amount of data to memset with given byte
*
* @return 0 in success, negative errno code otherwise.
*/
int net_pkt_memset(struct net_pkt *pkt, int byte, size_t length);
/**
* @brief Copy data from a packet into another one.
*
* Note: Both net_pkt cursors should be properly initialized and,
* eventually, properly positioned using net_pkt_skip.
* Cursors will be updated according to parameters.
*
* @param pkt_dst Destination network packet.
* @param pkt_src Source network packet.
* @param length Length of data to be copied.
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_copy(struct net_pkt *pkt_dst,
struct net_pkt *pkt_src,
size_t length);
/**
* @brief Clone pkt and its buffer.
*
* @param pkt Original pkt to be cloned
* @param timeout Timeout to wait for free buffer
*
* @return NULL if error, cloned packet otherwise.
*/
struct net_pkt *net_pkt_clone(struct net_pkt *pkt, s32_t timeout);
/**
* @brief Read some data from a net_pkt
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip.
* Cursor will be updated according to parameters.
* @param pkt The network packet from where to read some data
* @param data The destination buffer where to copy the data
* @param length The amount of data to copy
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_read_new(struct net_pkt *pkt, void *data, size_t length);
/* Read u8_t data data a net_pkt */
static inline int net_pkt_read_u8_new(struct net_pkt *pkt, u8_t *data)
{
return net_pkt_read_new(pkt, data, 1);
}
/**
* @brief Read u16_t big endian data from a net_pkt
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip.
* Cursor will be updated according to parameters.
*
* @param pkt The network packet from where to read
* @param data The destination u16_t where to copy the data
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_read_be16_new(struct net_pkt *pkt, u16_t *data);
/**
* @brief Read u32_t big endian data from a net_pkt
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip.
* Cursor will be updated according to parameters.
*
* @param pkt The network packet from where to read
* @param data The destination u32_t where to copy the data
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_read_be32_new(struct net_pkt *pkt, u32_t *data);
/**
* @brief Write data into a net_pkt
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip_read/write.
* Cursor will be updated according to parameters.
*
* @param pkt The network packet where to write
* @param data Data to be written
* @param length Length of the data to be written
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_write_new(struct net_pkt *pkt, const void *data, size_t length);
/* Write u8_t data into a net_pkt. */
static inline int net_pkt_write_u8_new(struct net_pkt *pkt, u8_t data)
{
return net_pkt_write_new(pkt, &data, sizeof(u8_t));
}
/* Write u16_t big endian data into a net_pkt. */
static inline int net_pkt_write_be16_new(struct net_pkt *pkt, u16_t data)
{
u16_t data_be16 = htons(data);
return net_pkt_write_new(pkt, &data_be16, sizeof(u16_t));
}
/* Write u32_t big endian data into a net_pkt. */
static inline int net_pkt_write_be32_new(struct net_pkt *pkt, u32_t data)
{
u32_t data_be32 = htonl(data);
return net_pkt_write_new(pkt, &data_be32, sizeof(u32_t));
}
/* Write u32_t little endian data into a net_pkt. */
static inline int net_pkt_write_le32_new(struct net_pkt *pkt, u32_t data)
{
u32_t data_le32 = sys_cpu_to_le32(data);
return net_pkt_write_new(pkt, &data_le32, sizeof(u32_t));
}
/**
* @brief Get the amount of data which can be read from current cursor position
*
* @param pkt Network packet
*
* @return Amount of data which can be read from current pkt cursor
*/
size_t net_pkt_remaining_data(struct net_pkt *pkt);
/**
* @brief Update the overall length of a packet
*
* Note: Unlike net_pkt_pull() below, this does not take packet cursor
* into account. It's mainly a helper dedicated for ipv4 and ipv6
* input functions. It shrinks the overall length by given parameter.
*
* @param pkt Network packet
* @param length The new length of the packet
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_update_length(struct net_pkt *pkt, size_t length);
/**
* @brief Remove data from the packet at current location
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip/read/write.
*
* @param pkt Network packet
* @param length Number of bytes to be removed
*
* @return 0 on success, negative errno code otherwise.
*/
int net_pkt_pull(struct net_pkt *pkt, size_t length);
/**
* @brief Get the actual offset in the packet from its cursor
*
* @param pkt Network packet.
*
* @return a valid offset on success, 0 otherwise as there is nothing that
* can be done to evaluate the offset.
*/
u16_t net_pkt_get_current_offset(struct net_pkt *pkt);
/**
* @brief Check if a data size could fit contiguously
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip_read/write.
*
* @param pkt Network packet.
* @param size The size to check for contiguity
*
* @return true if that is the case, false otherwise.
*/
bool net_pkt_is_contiguous(struct net_pkt *pkt, size_t size);
struct net_pkt_data_access {
#if !defined(CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS)
void *data;
#endif
const size_t size;
};
#if defined(CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS)
#define NET_PKT_DATA_ACCESS_DEFINE(_name, _type) \
struct net_pkt_data_access _name = { \
.size = sizeof(_type), \
}
#define NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(_name, _type) \
NET_PKT_DATA_ACCESS_DEFINE(_name, _type)
#else
#define NET_PKT_DATA_ACCESS_DEFINE(_name, _type) \
_type _hdr_##_name; \
struct net_pkt_data_access _name = { \
.data = &_hdr_##_name, \
.size = sizeof(_type), \
}
#define NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(_name, _type) \
struct net_pkt_data_access _name = { \
.data = NULL, \
.size = sizeof(_type), \
}
#endif /* CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS */
/**
* @brief Get data from a network packet in a contiguous way
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip_read/write.
* Cursor will be updated according to parameters.
*
* @param pkt The network packet from where to get the data.
* @param access A pointer to a valid net_pkt_data_access describing the
* data to get in a contiguous way.
*
* @return a pointer to the requested contiguous data, NULL otherwise.
*/
void *net_pkt_get_data_new(struct net_pkt *pkt,
struct net_pkt_data_access *access);
/**
* @brief Set contiguous data into a network packet
*
* Note: net_pkt's cursor should be properly initialized and,
* eventually, properly positioned using net_pkt_skip_read/write.
* Cursor will be updated according to parameters.
*
* @param pkt The network packet to where the data should be set.
* @param access A pointer to a valid net_pkt_data_access describing the
* data to set.
*
* @return 0 on success, a negative errno otherwise.
*/
int net_pkt_set_data(struct net_pkt *pkt,
struct net_pkt_data_access *access);
/**
* Acknowledge previously contiguous data taken from a network packet
* Packet needs to be set to overwrite mode.
*/
static inline int net_pkt_acknowledge_data(struct net_pkt *pkt,
struct net_pkt_data_access *access)
{
return net_pkt_skip(pkt, access->size);
}
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_NET_NET_PKT_H_ */