zephyr/drivers/timer/cc13x2_cc26x2_rtc_timer.c
Andy Ross 7832738ae9 kernel/timeout: Make timeout arguments an opaque type
Add a k_timeout_t type, and use it everywhere that kernel API
functions were accepting a millisecond timeout argument.  Instead of
forcing milliseconds everywhere (which are often not integrally
representable as system ticks), do the conversion to ticks at the
point where the timeout is created.  This avoids an extra unit
conversion in some application code, and allows us to express the
timeout in units other than milliseconds to achieve greater precision.

The existing K_MSEC() et. al. macros now return initializers for a
k_timeout_t.

The K_NO_WAIT and K_FOREVER constants have now become k_timeout_t
values, which means they cannot be operated on as integers.
Applications which have their own APIs that need to inspect these
vs. user-provided timeouts can now use a K_TIMEOUT_EQ() predicate to
test for equality.

Timer drivers, which receive an integer tick count in ther
z_clock_set_timeout() functions, now use the integer-valued
K_TICKS_FOREVER constant instead of K_FOREVER.

For the initial release, to preserve source compatibility, a
CONFIG_LEGACY_TIMEOUT_API kconfig is provided.  When true, the
k_timeout_t will remain a compatible 32 bit value that will work with
any legacy Zephyr application.

Some subsystems present timeout (or timeout-like) values to their own
users as APIs that would re-use the kernel's own constants and
conventions.  These will require some minor design work to adapt to
the new scheme (in most cases just using k_timeout_t directly in their
own API), and they have not been changed in this patch, instead
selecting CONFIG_LEGACY_TIMEOUT_API via kconfig.  These subsystems
include: CAN Bus, the Microbit display driver, I2S, LoRa modem
drivers, the UART Async API, Video hardware drivers, the console
subsystem, and the network buffer abstraction.

k_sleep() now takes a k_timeout_t argument, with a k_msleep() variant
provided that works identically to the original API.

Most of the changes here are just type/configuration management and
documentation, but there are logic changes in mempool, where a loop
that used a timeout numerically has been reworked using a new
z_timeout_end_calc() predicate.  Also in queue.c, a (when POLL was
enabled) a similar loop was needlessly used to try to retry the
k_poll() call after a spurious failure.  But k_poll() does not fail
spuriously, so the loop was removed.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2020-03-31 19:40:47 -04:00

246 lines
5.5 KiB
C

/*
* Copyright (c) 2019, Texas Instruments Incorporated
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ti_cc13xx_cc26xx_rtc
/*
* TI SimpleLink CC13X2/CC26X2 RTC-based system timer
*
* This system timer implementation supports both tickless and ticking modes.
* RTC counts continually in 64-bit mode and timeouts are
* scheduled using the RTC comparator. An interrupt is triggered whenever
* the comparator value set is reached.
*/
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <driverlib/interrupt.h>
#include <driverlib/aon_rtc.h>
#include <driverlib/aon_event.h>
#define RTC_COUNTS_PER_SEC 0x100000000ULL
/* Number of counts per rtc timer cycle */
#define RTC_COUNTS_PER_CYCLE (RTC_COUNTS_PER_SEC / \
sys_clock_hw_cycles_per_sec())
/* Number of counts per system clock tick */
#define RTC_COUNTS_PER_TICK (RTC_COUNTS_PER_SEC / \
CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/* Number of RTC cycles per system clock tick */
#define CYCLES_PER_TICK (sys_clock_hw_cycles_per_sec() / \
CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/*
* Maximum number of ticks.
*/
#define MAX_CYC 0x7FFFFFFFFFFFULL
#define MAX_TICKS (MAX_CYC / RTC_COUNTS_PER_TICK)
/*
* Due to the nature of clock synchronization, the comparator cannot be set
* to a value that is too close to the current time. This constant defines
* a safe threshold for the comparator.
*/
#define COMPARE_MARGIN 6
/* RTC count of the last announce call, rounded down to tick boundary. */
static volatile u64_t rtc_last;
#ifdef CONFIG_TICKLESS_KERNEL
static struct k_spinlock lock;
#else
static u64_t nextThreshold = RTC_COUNTS_PER_TICK;
#endif /* CONFIG_TICKLESS_KERNEL */
static void setThreshold(u32_t next)
{
u32_t now;
unsigned int key;
key = irq_lock();
/* get the current RTC count corresponding to compare window */
now = AONRTCCurrentCompareValueGet();
/* if next is too soon, set at least one RTC tick in future */
/* assume next never be more than half the maximum 32 bit count value */
if ((next - now) > (u32_t)0x80000000) {
/* now is past next */
next = now + COMPARE_MARGIN;
} else if ((now + COMPARE_MARGIN - next) < (u32_t)0x80000000) {
if (next < now + COMPARE_MARGIN) {
next = now + COMPARE_MARGIN;
}
}
/* set next compare threshold in RTC */
AONRTCCompareValueSet(AON_RTC_CH0, next);
irq_unlock(key);
}
void rtc_isr(void *arg)
{
#ifndef CONFIG_TICKLESS_KERNEL
u64_t newThreshold;
u32_t next;
#else
u64_t ticks, currCount;
#endif
ARG_UNUSED(arg);
AONRTCEventClear(AON_RTC_CH0);
#ifdef CONFIG_TICKLESS_KERNEL
k_spinlock_key_t key = k_spin_lock(&lock);
currCount = (u64_t)AONRTCCurrent64BitValueGet();
ticks = (currCount - rtc_last) / RTC_COUNTS_PER_TICK;
rtc_last += ticks * RTC_COUNTS_PER_TICK;
k_spin_unlock(&lock, key);
z_clock_announce(ticks);
#else /* !CONFIG_TICKLESS_KERNEL */
/* calculate new 64-bit RTC count for next interrupt */
newThreshold = nextThreshold + RTC_COUNTS_PER_TICK;
next = (u32_t)((u64_t)newThreshold >> 16);
setThreshold(next);
nextThreshold = newThreshold;
rtc_last += RTC_COUNTS_PER_TICK;
z_clock_announce(1);
#endif /* CONFIG_TICKLESS_KERNEL */
}
static void initDevice(void)
{
AONRTCDisable();
AONRTCReset();
HWREG(AON_RTC_BASE + AON_RTC_O_SYNC) = 1;
/* read sync register to complete reset */
HWREG(AON_RTC_BASE + AON_RTC_O_SYNC);
AONRTCEventClear(AON_RTC_CH0);
IntPendClear(INT_AON_RTC_COMB);
HWREG(AON_RTC_BASE + AON_RTC_O_SYNC);
}
static void startDevice(void)
{
u32_t compare;
u64_t period;
unsigned int key;
key = irq_lock();
/* reset timer */
AONRTCReset();
AONRTCEventClear(AON_RTC_CH0);
IntPendClear(INT_AON_RTC_COMB);
/*
* set the compare register to one period.
* For a very small period round up to interrupt upon 4th tick in
* compare register
*/
period = RTC_COUNTS_PER_TICK;
if (period < 0x40000) {
compare = 0x4; /* 4 * 15.5us ~= 62us */
} else {
/* else, interrupt on first period expiration */
compare = period >> 16;
}
/* set the compare value at the RTC */
AONRTCCompareValueSet(AON_RTC_CH0, compare);
/* enable compare channel 0 */
AONEventMcuWakeUpSet(AON_EVENT_MCU_WU0, AON_EVENT_RTC0);
AONRTCChannelEnable(AON_RTC_CH0);
AONRTCCombinedEventConfig(AON_RTC_CH0);
/* start timer */
AONRTCEnable();
irq_unlock(key);
}
int z_clock_driver_init(struct device *device)
{
ARG_UNUSED(device);
rtc_last = 0U;
initDevice();
startDevice();
/* Enable RTC interrupt. */
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
rtc_isr, 0, 0);
irq_enable(DT_INST_IRQN(0));
return 0;
}
void z_clock_set_timeout(s32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#ifdef CONFIG_TICKLESS_KERNEL
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
ticks = MAX(MIN(ticks - 1, (s32_t) MAX_TICKS), 0);
k_spinlock_key_t key = k_spin_lock(&lock);
/* Compute number of RTC cycles until the next timeout. */
u64_t count = AONRTCCurrent64BitValueGet();
u64_t timeout = ticks * RTC_COUNTS_PER_TICK +
(count - rtc_last);
/* Round to the nearest tick boundary. */
timeout = (timeout + RTC_COUNTS_PER_TICK - 1) / RTC_COUNTS_PER_TICK
* RTC_COUNTS_PER_TICK;
timeout = MIN(timeout, MAX_CYC);
timeout += rtc_last;
/* Set the comparator */
setThreshold(timeout >> 16);
k_spin_unlock(&lock, key);
#endif /* CONFIG_TICKLESS_KERNEL */
}
u32_t z_clock_elapsed(void)
{
u32_t ret = (AONRTCCurrent64BitValueGet() - rtc_last) /
RTC_COUNTS_PER_TICK;
return ret;
}
u32_t z_timer_cycle_get_32(void)
{
return (AONRTCCurrent64BitValueGet() / RTC_COUNTS_PER_CYCLE)
& 0xFFFFFFFF;
}