zephyr/drivers/dma/dma_gd32.c
Pieter De Gendt 6b532ff43e treewide: Update clock control API usage
Replace all (clock_control_subsys_t *) casts with (clock_control_subsys_t)

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2023-04-05 10:55:46 +02:00

705 lines
20 KiB
C

/*
* Copyright (c) 2022 TOKITA Hiroshi <tokita.hiroshi@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/gd32.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/logging/log.h>
#include <gd32_dma.h>
#include <zephyr/irq.h>
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
#define DT_DRV_COMPAT gd_gd32_dma_v1
#elif DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma)
#define DT_DRV_COMPAT gd_gd32_dma
#endif
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
#define CHXCTL_PERIEN_OFFSET ((uint32_t)25U)
#define GD32_DMA_CHXCTL_DIR BIT(6)
#define GD32_DMA_CHXCTL_M2M BIT(7)
#define GD32_DMA_INTERRUPT_ERRORS (DMA_CHXCTL_SDEIE | DMA_CHXCTL_TAEIE)
#define GD32_DMA_FLAG_ERRORS (DMA_FLAG_SDE | DMA_FLAG_TAE)
#else
#define GD32_DMA_CHXCTL_DIR BIT(4)
#define GD32_DMA_CHXCTL_M2M BIT(14)
#define GD32_DMA_INTERRUPT_ERRORS DMA_CHXCTL_ERRIE
#define GD32_DMA_FLAG_ERRORS DMA_FLAG_ERR
#endif
#ifdef CONFIG_SOC_SERIES_GD32F3X0
#undef DMA_INTF
#undef DMA_INTC
#undef DMA_CHCTL
#undef DMA_CHCNT
#undef DMA_CHPADDR
#undef DMA_CHMADDR
#define DMA_INTF(dma) REG32(dma + 0x00UL)
#define DMA_INTC(dma) REG32(dma + 0x04UL)
#define DMA_CHCTL(dma, ch) REG32((dma + 0x08UL) + 0x14UL * (uint32_t)(ch))
#define DMA_CHCNT(dma, ch) REG32((dma + 0x0CUL) + 0x14UL * (uint32_t)(ch))
#define DMA_CHPADDR(dma, ch) REG32((dma + 0x10UL) + 0x14UL * (uint32_t)(ch))
#define DMA_CHMADDR(dma, ch) REG32((dma + 0x14UL) + 0x14UL * (uint32_t)(ch))
#endif
#define GD32_DMA_INTF(dma) DMA_INTF(dma)
#define GD32_DMA_INTC(dma) DMA_INTC(dma)
#define GD32_DMA_CHCTL(dma, ch) DMA_CHCTL((dma), (ch))
#define GD32_DMA_CHCNT(dma, ch) DMA_CHCNT((dma), (ch))
#define GD32_DMA_CHPADDR(dma, ch) DMA_CHPADDR((dma), (ch))
#define GD32_DMA_CHMADDR(dma, ch) DMA_CHMADDR((dma), (ch))
LOG_MODULE_REGISTER(dma_gd32, CONFIG_DMA_LOG_LEVEL);
struct dma_gd32_config {
uint32_t reg;
uint32_t channels;
uint16_t clkid;
bool mem2mem;
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
struct reset_dt_spec reset;
#endif
void (*irq_configure)(void);
};
struct dma_gd32_channel {
dma_callback_t callback;
void *user_data;
uint32_t direction;
bool busy;
};
struct dma_gd32_data {
struct dma_context ctx;
struct dma_gd32_channel *channels;
};
struct dma_gd32_srcdst_config {
uint32_t addr;
uint32_t adj;
uint32_t width;
};
/*
* Register access functions
*/
static inline void
gd32_dma_periph_increase_enable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) |= DMA_CHXCTL_PNAGA;
}
static inline void
gd32_dma_periph_increase_disable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) &= ~DMA_CHXCTL_PNAGA;
}
static inline void
gd32_dma_transfer_set_memory_to_memory(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) |= GD32_DMA_CHXCTL_M2M;
GD32_DMA_CHCTL(reg, ch) &= ~GD32_DMA_CHXCTL_DIR;
}
static inline void
gd32_dma_transfer_set_memory_to_periph(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) &= ~GD32_DMA_CHXCTL_M2M;
GD32_DMA_CHCTL(reg, ch) |= GD32_DMA_CHXCTL_DIR;
}
static inline void
gd32_dma_transfer_set_periph_to_memory(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) &= ~GD32_DMA_CHXCTL_M2M;
GD32_DMA_CHCTL(reg, ch) &= ~GD32_DMA_CHXCTL_DIR;
}
static inline void
gd32_dma_memory_increase_enable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) |= DMA_CHXCTL_MNAGA;
}
static inline void
gd32_dma_memory_increase_disable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) &= ~DMA_CHXCTL_MNAGA;
}
static inline void
gd32_dma_circulation_enable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) |= DMA_CHXCTL_CMEN;
}
static inline void
gd32_dma_circulation_disable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) &= ~DMA_CHXCTL_CMEN;
}
static inline void gd32_dma_channel_enable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) |= DMA_CHXCTL_CHEN;
}
static inline void gd32_dma_channel_disable(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) &= ~DMA_CHXCTL_CHEN;
}
static inline void
gd32_dma_interrupt_enable(uint32_t reg, dma_channel_enum ch, uint32_t source)
{
GD32_DMA_CHCTL(reg, ch) |= source;
}
static inline void
gd32_dma_interrupt_disable(uint32_t reg, dma_channel_enum ch, uint32_t source)
{
GD32_DMA_CHCTL(reg, ch) &= ~source;
}
static inline void
gd32_dma_priority_config(uint32_t reg, dma_channel_enum ch, uint32_t priority)
{
uint32_t ctl = GD32_DMA_CHCTL(reg, ch);
GD32_DMA_CHCTL(reg, ch) = (ctl & (~DMA_CHXCTL_PRIO)) | priority;
}
static inline void
gd32_dma_memory_width_config(uint32_t reg, dma_channel_enum ch, uint32_t mwidth)
{
uint32_t ctl = GD32_DMA_CHCTL(reg, ch);
GD32_DMA_CHCTL(reg, ch) = (ctl & (~DMA_CHXCTL_MWIDTH)) | mwidth;
}
static inline void
gd32_dma_periph_width_config(uint32_t reg, dma_channel_enum ch, uint32_t pwidth)
{
uint32_t ctl = GD32_DMA_CHCTL(reg, ch);
GD32_DMA_CHCTL(reg, ch) = (ctl & (~DMA_CHXCTL_PWIDTH)) | pwidth;
}
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
static inline void
gd32_dma_channel_subperipheral_select(uint32_t reg, dma_channel_enum ch,
dma_subperipheral_enum sub_periph)
{
uint32_t ctl = GD32_DMA_CHCTL(reg, ch);
GD32_DMA_CHCTL(reg, ch) =
(ctl & (~DMA_CHXCTL_PERIEN)) |
((uint32_t)sub_periph << CHXCTL_PERIEN_OFFSET);
}
#endif
static inline void
gd32_dma_periph_address_config(uint32_t reg, dma_channel_enum ch, uint32_t addr)
{
GD32_DMA_CHPADDR(reg, ch) = addr;
}
static inline void
gd32_dma_memory_address_config(uint32_t reg, dma_channel_enum ch, uint32_t addr)
{
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
DMA_CHM0ADDR(reg, ch) = addr;
#else
GD32_DMA_CHMADDR(reg, ch) = addr;
#endif
}
static inline void
gd32_dma_transfer_number_config(uint32_t reg, dma_channel_enum ch, uint32_t num)
{
GD32_DMA_CHCNT(reg, ch) = (num & DMA_CHXCNT_CNT);
}
static inline uint32_t
gd32_dma_transfer_number_get(uint32_t reg, dma_channel_enum ch)
{
return GD32_DMA_CHCNT(reg, ch);
}
static inline void
gd32_dma_interrupt_flag_clear(uint32_t reg, dma_channel_enum ch, uint32_t flag)
{
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
if (ch < DMA_CH4) {
DMA_INTC0(reg) |= DMA_FLAG_ADD(flag, ch);
} else {
DMA_INTC1(reg) |= DMA_FLAG_ADD(flag, ch - DMA_CH4);
}
#else
GD32_DMA_INTC(reg) |= DMA_FLAG_ADD(flag, ch);
#endif
}
static inline void
gd32_dma_flag_clear(uint32_t reg, dma_channel_enum ch, uint32_t flag)
{
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
if (ch < DMA_CH4) {
DMA_INTC0(reg) |= DMA_FLAG_ADD(flag, ch);
} else {
DMA_INTC1(reg) |= DMA_FLAG_ADD(flag, ch - DMA_CH4);
}
#else
GD32_DMA_INTC(reg) |= DMA_FLAG_ADD(flag, ch);
#endif
}
static inline uint32_t
gd32_dma_interrupt_flag_get(uint32_t reg, dma_channel_enum ch, uint32_t flag)
{
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
if (ch < DMA_CH4) {
return (DMA_INTF0(reg) & DMA_FLAG_ADD(flag, ch));
} else {
return (DMA_INTF1(reg) & DMA_FLAG_ADD(flag, ch - DMA_CH4));
}
#else
return (GD32_DMA_INTF(reg) & DMA_FLAG_ADD(flag, ch));
#endif
}
static inline void gd32_dma_deinit(uint32_t reg, dma_channel_enum ch)
{
GD32_DMA_CHCTL(reg, ch) &= ~DMA_CHXCTL_CHEN;
GD32_DMA_CHCTL(reg, ch) = DMA_CHCTL_RESET_VALUE;
GD32_DMA_CHCNT(reg, ch) = DMA_CHCNT_RESET_VALUE;
GD32_DMA_CHPADDR(reg, ch) = DMA_CHPADDR_RESET_VALUE;
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
DMA_CHM0ADDR(reg, ch) = DMA_CHMADDR_RESET_VALUE;
DMA_CHFCTL(reg, ch) = DMA_CHFCTL_RESET_VALUE;
if (ch < DMA_CH4) {
DMA_INTC0(reg) |= DMA_FLAG_ADD(DMA_CHINTF_RESET_VALUE, ch);
} else {
DMA_INTC1(reg) |=
DMA_FLAG_ADD(DMA_CHINTF_RESET_VALUE, ch - DMA_CH4);
}
#else
GD32_DMA_CHMADDR(reg, ch) = DMA_CHMADDR_RESET_VALUE;
GD32_DMA_INTC(reg) |= DMA_FLAG_ADD(DMA_CHINTF_RESET_VALUE, ch);
#endif
}
/*
* Utility functions
*/
static inline uint32_t dma_gd32_priority(uint32_t prio)
{
return CHCTL_PRIO(prio);
}
static inline uint32_t dma_gd32_memory_width(uint32_t width)
{
switch (width) {
case 4:
return CHCTL_MWIDTH(2);
case 2:
return CHCTL_MWIDTH(1);
default:
return CHCTL_MWIDTH(0);
}
}
static inline uint32_t dma_gd32_periph_width(uint32_t width)
{
switch (width) {
case 4:
return CHCTL_PWIDTH(2);
case 2:
return CHCTL_PWIDTH(1);
default:
return CHCTL_PWIDTH(0);
}
}
/*
* API functions
*/
static int dma_gd32_config(const struct device *dev, uint32_t channel,
struct dma_config *dma_cfg)
{
const struct dma_gd32_config *cfg = dev->config;
struct dma_gd32_data *data = dev->data;
struct dma_gd32_srcdst_config src_cfg;
struct dma_gd32_srcdst_config dst_cfg;
struct dma_gd32_srcdst_config *memory_cfg = NULL;
struct dma_gd32_srcdst_config *periph_cfg = NULL;
if (channel >= cfg->channels) {
LOG_ERR("channel must be < %" PRIu32 " (%" PRIu32 ")",
cfg->channels, channel);
return -EINVAL;
}
if (dma_cfg->block_count != 1) {
LOG_ERR("chained block transfer not supported.");
return -ENOTSUP;
}
if (dma_cfg->channel_priority > 3) {
LOG_ERR("channel_priority must be < 4 (%" PRIu32 ")",
dma_cfg->channel_priority);
return -EINVAL;
}
if (dma_cfg->head_block->source_addr_adj == DMA_ADDR_ADJ_DECREMENT) {
LOG_ERR("source_addr_adj not supported DMA_ADDR_ADJ_DECREMENT");
return -ENOTSUP;
}
if (dma_cfg->head_block->dest_addr_adj == DMA_ADDR_ADJ_DECREMENT) {
LOG_ERR("dest_addr_adj not supported DMA_ADDR_ADJ_DECREMENT");
return -ENOTSUP;
}
if (dma_cfg->head_block->source_addr_adj != DMA_ADDR_ADJ_INCREMENT &&
dma_cfg->head_block->source_addr_adj != DMA_ADDR_ADJ_NO_CHANGE) {
LOG_ERR("invalid source_addr_adj %" PRIu16,
dma_cfg->head_block->source_addr_adj);
return -ENOTSUP;
}
if (dma_cfg->head_block->dest_addr_adj != DMA_ADDR_ADJ_INCREMENT &&
dma_cfg->head_block->dest_addr_adj != DMA_ADDR_ADJ_NO_CHANGE) {
LOG_ERR("invalid dest_addr_adj %" PRIu16,
dma_cfg->head_block->dest_addr_adj);
return -ENOTSUP;
}
if (dma_cfg->source_data_size != 1 && dma_cfg->source_data_size != 2 &&
dma_cfg->source_data_size != 4) {
LOG_ERR("source_data_size must be 1, 2, or 4 (%" PRIu32 ")",
dma_cfg->source_data_size);
return -EINVAL;
}
if (dma_cfg->dest_data_size != 1 && dma_cfg->dest_data_size != 2 &&
dma_cfg->dest_data_size != 4) {
LOG_ERR("dest_data_size must be 1, 2, or 4 (%" PRIu32 ")",
dma_cfg->dest_data_size);
return -EINVAL;
}
if (dma_cfg->channel_direction > PERIPHERAL_TO_MEMORY) {
LOG_ERR("channel_direction must be MEMORY_TO_MEMORY, "
"MEMORY_TO_PERIPHERAL or PERIPHERAL_TO_MEMORY (%" PRIu32
")",
dma_cfg->channel_direction);
return -ENOTSUP;
}
if (dma_cfg->channel_direction == MEMORY_TO_MEMORY && !cfg->mem2mem) {
LOG_ERR("not supporting MEMORY_TO_MEMORY");
return -ENOTSUP;
}
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
if (dma_cfg->dma_slot > 0xF) {
LOG_ERR("dma_slot must be <7 (%" PRIu32 ")",
dma_cfg->dma_slot);
return -EINVAL;
}
#endif
gd32_dma_deinit(cfg->reg, channel);
src_cfg.addr = dma_cfg->head_block->source_address;
src_cfg.adj = dma_cfg->head_block->source_addr_adj;
src_cfg.width = dma_cfg->source_data_size;
dst_cfg.addr = dma_cfg->head_block->dest_address;
dst_cfg.adj = dma_cfg->head_block->dest_addr_adj;
dst_cfg.width = dma_cfg->dest_data_size;
switch (dma_cfg->channel_direction) {
case MEMORY_TO_MEMORY:
gd32_dma_transfer_set_memory_to_memory(cfg->reg, channel);
memory_cfg = &dst_cfg;
periph_cfg = &src_cfg;
break;
case PERIPHERAL_TO_MEMORY:
gd32_dma_transfer_set_periph_to_memory(cfg->reg, channel);
memory_cfg = &dst_cfg;
periph_cfg = &src_cfg;
break;
case MEMORY_TO_PERIPHERAL:
gd32_dma_transfer_set_memory_to_periph(cfg->reg, channel);
memory_cfg = &src_cfg;
periph_cfg = &dst_cfg;
break;
}
gd32_dma_memory_address_config(cfg->reg, channel, memory_cfg->addr);
if (memory_cfg->adj == DMA_ADDR_ADJ_INCREMENT) {
gd32_dma_memory_increase_enable(cfg->reg, channel);
} else {
gd32_dma_memory_increase_disable(cfg->reg, channel);
}
gd32_dma_periph_address_config(cfg->reg, channel, periph_cfg->addr);
if (periph_cfg->adj == DMA_ADDR_ADJ_INCREMENT) {
gd32_dma_periph_increase_enable(cfg->reg, channel);
} else {
gd32_dma_periph_increase_disable(cfg->reg, channel);
}
gd32_dma_transfer_number_config(cfg->reg, channel,
dma_cfg->head_block->block_size);
gd32_dma_priority_config(cfg->reg, channel,
dma_gd32_priority(dma_cfg->channel_priority));
gd32_dma_memory_width_config(cfg->reg, channel,
dma_gd32_memory_width(memory_cfg->width));
gd32_dma_periph_width_config(cfg->reg, channel,
dma_gd32_periph_width(periph_cfg->width));
gd32_dma_circulation_disable(cfg->reg, channel);
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
if (dma_cfg->channel_direction != MEMORY_TO_MEMORY) {
gd32_dma_channel_subperipheral_select(cfg->reg, channel,
dma_cfg->dma_slot);
}
#endif
data->channels[channel].callback = dma_cfg->dma_callback;
data->channels[channel].user_data = dma_cfg->user_data;
data->channels[channel].direction = dma_cfg->channel_direction;
return 0;
}
static int dma_gd32_reload(const struct device *dev, uint32_t ch, uint32_t src,
uint32_t dst, size_t size)
{
const struct dma_gd32_config *cfg = dev->config;
struct dma_gd32_data *data = dev->data;
if (ch >= cfg->channels) {
LOG_ERR("reload channel must be < %" PRIu32 " (%" PRIu32 ")",
cfg->channels, ch);
return -EINVAL;
}
if (data->channels[ch].busy) {
return -EBUSY;
}
gd32_dma_channel_disable(cfg->reg, ch);
gd32_dma_transfer_number_config(cfg->reg, ch, size);
switch (data->channels[ch].direction) {
case MEMORY_TO_MEMORY:
case PERIPHERAL_TO_MEMORY:
gd32_dma_memory_address_config(cfg->reg, ch, dst);
gd32_dma_periph_address_config(cfg->reg, ch, src);
break;
case MEMORY_TO_PERIPHERAL:
gd32_dma_memory_address_config(cfg->reg, ch, src);
gd32_dma_periph_address_config(cfg->reg, ch, dst);
break;
}
gd32_dma_channel_enable(cfg->reg, ch);
return 0;
}
static int dma_gd32_start(const struct device *dev, uint32_t ch)
{
const struct dma_gd32_config *cfg = dev->config;
struct dma_gd32_data *data = dev->data;
if (ch >= cfg->channels) {
LOG_ERR("start channel must be < %" PRIu32 " (%" PRIu32 ")",
cfg->channels, ch);
return -EINVAL;
}
gd32_dma_interrupt_enable(cfg->reg, ch,
DMA_CHXCTL_FTFIE | GD32_DMA_INTERRUPT_ERRORS);
gd32_dma_channel_enable(cfg->reg, ch);
data->channels[ch].busy = true;
return 0;
}
static int dma_gd32_stop(const struct device *dev, uint32_t ch)
{
const struct dma_gd32_config *cfg = dev->config;
struct dma_gd32_data *data = dev->data;
if (ch >= cfg->channels) {
LOG_ERR("stop channel must be < %" PRIu32 " (%" PRIu32 ")",
cfg->channels, ch);
return -EINVAL;
}
gd32_dma_interrupt_disable(
cfg->reg, ch, DMA_CHXCTL_FTFIE | GD32_DMA_INTERRUPT_ERRORS);
gd32_dma_interrupt_flag_clear(cfg->reg, ch,
DMA_FLAG_FTF | GD32_DMA_FLAG_ERRORS);
gd32_dma_channel_disable(cfg->reg, ch);
data->channels[ch].busy = false;
return 0;
}
static int dma_gd32_get_status(const struct device *dev, uint32_t ch,
struct dma_status *stat)
{
const struct dma_gd32_config *cfg = dev->config;
struct dma_gd32_data *data = dev->data;
if (ch >= cfg->channels) {
LOG_ERR("channel must be < %" PRIu32 " (%" PRIu32 ")",
cfg->channels, ch);
return -EINVAL;
}
stat->pending_length = gd32_dma_transfer_number_get(cfg->reg, ch);
stat->dir = data->channels[ch].direction;
stat->busy = data->channels[ch].busy;
return 0;
}
static bool dma_gd32_api_chan_filter(const struct device *dev, int ch,
void *filter_param)
{
uint32_t filter;
if (!filter_param) {
LOG_ERR("filter_param must not be NULL");
return false;
}
filter = *((uint32_t *)filter_param);
return (filter & BIT(ch));
}
static int dma_gd32_init(const struct device *dev)
{
const struct dma_gd32_config *cfg = dev->config;
(void)clock_control_on(GD32_CLOCK_CONTROLLER,
(clock_control_subsys_t)&cfg->clkid);
#if DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1)
(void)reset_line_toggle_dt(&cfg->reset);
#endif
for (uint32_t i = 0; i < cfg->channels; i++) {
gd32_dma_interrupt_disable(cfg->reg, i,
DMA_CHXCTL_FTFIE | GD32_DMA_INTERRUPT_ERRORS);
gd32_dma_deinit(cfg->reg, i);
}
cfg->irq_configure();
return 0;
}
static void dma_gd32_isr(const struct device *dev)
{
const struct dma_gd32_config *cfg = dev->config;
struct dma_gd32_data *data = dev->data;
uint32_t errflag, ftfflag;
int err = 0;
for (uint32_t i = 0; i < cfg->channels; i++) {
errflag = gd32_dma_interrupt_flag_get(cfg->reg, i,
GD32_DMA_FLAG_ERRORS);
ftfflag =
gd32_dma_interrupt_flag_get(cfg->reg, i, DMA_FLAG_FTF);
if (errflag == 0 && ftfflag == 0) {
continue;
}
if (errflag) {
err = -EIO;
}
gd32_dma_interrupt_flag_clear(
cfg->reg, i, DMA_FLAG_FTF | GD32_DMA_FLAG_ERRORS);
data->channels[i].busy = false;
if (data->channels[i].callback) {
data->channels[i].callback(
dev, data->channels[i].user_data, i, err);
}
}
}
static const struct dma_driver_api dma_gd32_driver_api = {
.config = dma_gd32_config,
.reload = dma_gd32_reload,
.start = dma_gd32_start,
.stop = dma_gd32_stop,
.get_status = dma_gd32_get_status,
.chan_filter = dma_gd32_api_chan_filter,
};
#define IRQ_CONFIGURE(n, inst) \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(inst, n, irq), \
DT_INST_IRQ_BY_IDX(inst, n, priority), dma_gd32_isr, \
DEVICE_DT_INST_GET(inst), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(inst, n, irq));
#define CONFIGURE_ALL_IRQS(inst, n) LISTIFY(n, IRQ_CONFIGURE, (), inst)
#define GD32_DMA_INIT(inst) \
static void dma_gd32##inst##_irq_configure(void) \
{ \
CONFIGURE_ALL_IRQS(inst, DT_NUM_IRQS(DT_DRV_INST(inst))); \
} \
static const struct dma_gd32_config dma_gd32##inst##_config = { \
.reg = DT_INST_REG_ADDR(inst), \
.channels = DT_INST_PROP(inst, dma_channels), \
.clkid = DT_INST_CLOCKS_CELL(inst, id), \
.mem2mem = DT_INST_PROP(inst, gd_mem2mem), \
IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1), \
(.reset = RESET_DT_SPEC_INST_GET(inst),)) \
.irq_configure = dma_gd32##inst##_irq_configure, \
}; \
\
static struct dma_gd32_channel \
dma_gd32##inst##_channels[DT_INST_PROP(inst, dma_channels)]; \
ATOMIC_DEFINE(dma_gd32_atomic##inst, \
DT_INST_PROP(inst, dma_channels)); \
static struct dma_gd32_data dma_gd32##inst##_data = { \
.ctx = { \
.magic = DMA_MAGIC, \
.atomic = dma_gd32_atomic##inst, \
.dma_channels = DT_INST_PROP(inst, dma_channels), \
}, \
.channels = dma_gd32##inst##_channels, \
}; \
\
DEVICE_DT_INST_DEFINE(inst, &dma_gd32_init, NULL, \
&dma_gd32##inst##_data, \
&dma_gd32##inst##_config, POST_KERNEL, \
CONFIG_DMA_INIT_PRIORITY, &dma_gd32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(GD32_DMA_INIT)