f3afd5a4c9
Rework the fragile and ad-hoc computation of timeslice expirations into per-CPU struct _timeout objects with regular callbacks. The expiration callbacks themselves simply set a per-cpu flag (they might run on any CPU), which gets checked at the end of the timer ISR on every CPU. This simplifies logic and removes a bunch of code. It also fixes at least three bugs: 1. As @npitre discovered: On SMP, the number of ticks announced on any given CPU is going to be a subset of all expired ticks. This broke the accounting of timeslice ticks, and effectively meant that timeslicing only worked on SMP on systems where one CPU could hog all the announcements, and only on that CPU. 2. The bootstrap path to arm the timer driver after setting the first timeout in an empty list couldn't take into account sys_clock_elapsed() ticks, as it didn't know whether it was being called underneath an existing announce loop. Now this code is no longer responsible for knowing anything about time slicing at all. 3. Also on SMP, there was a case where two CPUs timeslicing simultaneously could stomp on each others' timeouts in z_set_timeout_expiry(), as neither had a way of knowing what the other's state was. CPUs could miss their own expiration and have to wait for the slice expiration on the other CPU. Now, timeouts are global objects with simple expiration times, and there's no need for that function at all. Signed-off-by: Andy Ross <andyross@google.com>
351 lines
7.2 KiB
C
351 lines
7.2 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <ksched.h>
|
|
#include <zephyr/timeout_q.h>
|
|
#include <zephyr/syscall_handler.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <zephyr/sys_clock.h>
|
|
|
|
static uint64_t curr_tick;
|
|
|
|
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
|
|
|
|
static struct k_spinlock timeout_lock;
|
|
|
|
#define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \
|
|
? K_TICKS_FOREVER : INT_MAX)
|
|
|
|
/* Cycles left to process in the currently-executing sys_clock_announce() */
|
|
static int announce_remaining;
|
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
|
|
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_sys_clock_hw_cycles_per_sec_runtime_get(void)
|
|
{
|
|
return z_impl_sys_clock_hw_cycles_per_sec_runtime_get();
|
|
}
|
|
#include <syscalls/sys_clock_hw_cycles_per_sec_runtime_get_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
|
|
|
|
static struct _timeout *first(void)
|
|
{
|
|
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
|
|
|
|
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
|
|
}
|
|
|
|
static struct _timeout *next(struct _timeout *t)
|
|
{
|
|
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
|
|
|
|
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
|
|
}
|
|
|
|
static void remove_timeout(struct _timeout *t)
|
|
{
|
|
if (next(t) != NULL) {
|
|
next(t)->dticks += t->dticks;
|
|
}
|
|
|
|
sys_dlist_remove(&t->node);
|
|
}
|
|
|
|
static int32_t elapsed(void)
|
|
{
|
|
return announce_remaining == 0 ? sys_clock_elapsed() : 0U;
|
|
}
|
|
|
|
static int32_t next_timeout(void)
|
|
{
|
|
struct _timeout *to = first();
|
|
int32_t ticks_elapsed = elapsed();
|
|
int32_t ret;
|
|
|
|
if ((to == NULL) ||
|
|
((int64_t)(to->dticks - ticks_elapsed) > (int64_t)INT_MAX)) {
|
|
ret = MAX_WAIT;
|
|
} else {
|
|
ret = MAX(0, to->dticks - ticks_elapsed);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void z_add_timeout(struct _timeout *to, _timeout_func_t fn,
|
|
k_timeout_t timeout)
|
|
{
|
|
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT_NO_MSG(arch_mem_coherent(to));
|
|
#endif
|
|
|
|
__ASSERT(!sys_dnode_is_linked(&to->node), "");
|
|
to->fn = fn;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
struct _timeout *t;
|
|
|
|
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) &&
|
|
Z_TICK_ABS(timeout.ticks) >= 0) {
|
|
k_ticks_t ticks = Z_TICK_ABS(timeout.ticks) - curr_tick;
|
|
|
|
to->dticks = MAX(1, ticks);
|
|
} else {
|
|
to->dticks = timeout.ticks + 1 + elapsed();
|
|
}
|
|
|
|
for (t = first(); t != NULL; t = next(t)) {
|
|
if (t->dticks > to->dticks) {
|
|
t->dticks -= to->dticks;
|
|
sys_dlist_insert(&t->node, &to->node);
|
|
break;
|
|
}
|
|
to->dticks -= t->dticks;
|
|
}
|
|
|
|
if (t == NULL) {
|
|
sys_dlist_append(&timeout_list, &to->node);
|
|
}
|
|
|
|
if (to == first()) {
|
|
sys_clock_set_timeout(next_timeout(), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
int z_abort_timeout(struct _timeout *to)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
if (sys_dnode_is_linked(&to->node)) {
|
|
remove_timeout(to);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* must be locked */
|
|
static k_ticks_t timeout_rem(const struct _timeout *timeout)
|
|
{
|
|
k_ticks_t ticks = 0;
|
|
|
|
if (z_is_inactive_timeout(timeout)) {
|
|
return 0;
|
|
}
|
|
|
|
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
|
|
ticks += t->dticks;
|
|
if (timeout == t) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ticks - elapsed();
|
|
}
|
|
|
|
k_ticks_t z_timeout_remaining(const struct _timeout *timeout)
|
|
{
|
|
k_ticks_t ticks = 0;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
ticks = timeout_rem(timeout);
|
|
}
|
|
|
|
return ticks;
|
|
}
|
|
|
|
k_ticks_t z_timeout_expires(const struct _timeout *timeout)
|
|
{
|
|
k_ticks_t ticks = 0;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
ticks = curr_tick + timeout_rem(timeout);
|
|
}
|
|
|
|
return ticks;
|
|
}
|
|
|
|
int32_t z_get_next_timeout_expiry(void)
|
|
{
|
|
int32_t ret = (int32_t) K_TICKS_FOREVER;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
ret = next_timeout();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void sys_clock_announce(int32_t ticks)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
|
|
|
|
/* We release the lock around the callbacks below, so on SMP
|
|
* systems someone might be already running the loop. Don't
|
|
* race (which will cause paralllel execution of "sequential"
|
|
* timeouts and confuse apps), just increment the tick count
|
|
* and return.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SMP) && (announce_remaining != 0)) {
|
|
announce_remaining += ticks;
|
|
k_spin_unlock(&timeout_lock, key);
|
|
return;
|
|
}
|
|
|
|
announce_remaining = ticks;
|
|
|
|
struct _timeout *t = first();
|
|
|
|
for (t = first();
|
|
(t != NULL) && (t->dticks <= announce_remaining);
|
|
t = first()) {
|
|
int dt = t->dticks;
|
|
|
|
curr_tick += dt;
|
|
t->dticks = 0;
|
|
remove_timeout(t);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
t->fn(t);
|
|
key = k_spin_lock(&timeout_lock);
|
|
announce_remaining -= dt;
|
|
}
|
|
|
|
if (t != NULL) {
|
|
t->dticks -= announce_remaining;
|
|
}
|
|
|
|
curr_tick += announce_remaining;
|
|
announce_remaining = 0;
|
|
|
|
sys_clock_set_timeout(next_timeout(), false);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_time_slice();
|
|
#endif
|
|
}
|
|
|
|
int64_t sys_clock_tick_get(void)
|
|
{
|
|
uint64_t t = 0U;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
t = curr_tick + elapsed();
|
|
}
|
|
return t;
|
|
}
|
|
|
|
uint32_t sys_clock_tick_get_32(void)
|
|
{
|
|
#ifdef CONFIG_TICKLESS_KERNEL
|
|
return (uint32_t)sys_clock_tick_get();
|
|
#else
|
|
return (uint32_t)curr_tick;
|
|
#endif
|
|
}
|
|
|
|
int64_t z_impl_k_uptime_ticks(void)
|
|
{
|
|
return sys_clock_tick_get();
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int64_t z_vrfy_k_uptime_ticks(void)
|
|
{
|
|
return z_impl_k_uptime_ticks();
|
|
}
|
|
#include <syscalls/k_uptime_ticks_mrsh.c>
|
|
#endif
|
|
|
|
void z_impl_k_busy_wait(uint32_t usec_to_wait)
|
|
{
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, busy_wait, usec_to_wait);
|
|
if (usec_to_wait == 0U) {
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, busy_wait, usec_to_wait);
|
|
return;
|
|
}
|
|
|
|
#if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT)
|
|
uint32_t start_cycles = k_cycle_get_32();
|
|
|
|
/* use 64-bit math to prevent overflow when multiplying */
|
|
uint32_t cycles_to_wait = (uint32_t)(
|
|
(uint64_t)usec_to_wait *
|
|
(uint64_t)sys_clock_hw_cycles_per_sec() /
|
|
(uint64_t)USEC_PER_SEC
|
|
);
|
|
|
|
for (;;) {
|
|
uint32_t current_cycles = k_cycle_get_32();
|
|
|
|
/* this handles the rollover on an unsigned 32-bit value */
|
|
if ((current_cycles - start_cycles) >= cycles_to_wait) {
|
|
break;
|
|
}
|
|
}
|
|
#else
|
|
arch_busy_wait(usec_to_wait);
|
|
#endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, busy_wait, usec_to_wait);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_busy_wait(uint32_t usec_to_wait)
|
|
{
|
|
z_impl_k_busy_wait(usec_to_wait);
|
|
}
|
|
#include <syscalls/k_busy_wait_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
/* Returns the uptime expiration (relative to an unlocked "now"!) of a
|
|
* timeout object. When used correctly, this should be called once,
|
|
* synchronously with the user passing a new timeout value. It should
|
|
* not be used iteratively to adjust a timeout.
|
|
*/
|
|
uint64_t sys_clock_timeout_end_calc(k_timeout_t timeout)
|
|
{
|
|
k_ticks_t dt;
|
|
|
|
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
return UINT64_MAX;
|
|
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
|
|
return sys_clock_tick_get();
|
|
} else {
|
|
|
|
dt = timeout.ticks;
|
|
|
|
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) {
|
|
return Z_TICK_ABS(dt);
|
|
}
|
|
return sys_clock_tick_get() + MAX(1, dt);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ZTEST
|
|
void z_impl_sys_clock_tick_set(uint64_t tick)
|
|
{
|
|
curr_tick = tick;
|
|
}
|
|
|
|
void z_vrfy_sys_clock_tick_set(uint64_t tick)
|
|
{
|
|
z_impl_sys_clock_tick_set(tick);
|
|
}
|
|
#endif
|