1202810119
This API doesn't use the normal thread priority comparison itself, so doesn't get the magic that thread_base.prio provides. If called when another thread should be run, this would preempt the current thread always, even if the scheduler lock was taken. That was benign until recent spinlockifiation exposed it: a mutex in the philosophers test run in preempt_only mode would swap away while holding a spinlock (which used to work with irq locks) and fail later with a "recursive" spinlock assert. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
1005 lines
22 KiB
C
1005 lines
22 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <kernel.h>
|
|
#include <ksched.h>
|
|
#include <spinlock.h>
|
|
#include <sched_priq.h>
|
|
#include <wait_q.h>
|
|
#include <kswap.h>
|
|
#include <kernel_arch_func.h>
|
|
#include <syscall_handler.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <stdbool.h>
|
|
|
|
#if defined(CONFIG_SCHED_DUMB)
|
|
#define _priq_run_add _priq_dumb_add
|
|
#define _priq_run_remove _priq_dumb_remove
|
|
# if defined(CONFIG_SCHED_CPU_MASK)
|
|
# define _priq_run_best _priq_dumb_mask_best
|
|
# else
|
|
# define _priq_run_best _priq_dumb_best
|
|
# endif
|
|
#elif defined(CONFIG_SCHED_SCALABLE)
|
|
#define _priq_run_add _priq_rb_add
|
|
#define _priq_run_remove _priq_rb_remove
|
|
#define _priq_run_best _priq_rb_best
|
|
#elif defined(CONFIG_SCHED_MULTIQ)
|
|
#define _priq_run_add _priq_mq_add
|
|
#define _priq_run_remove _priq_mq_remove
|
|
#define _priq_run_best _priq_mq_best
|
|
#endif
|
|
|
|
#if defined(CONFIG_WAITQ_SCALABLE)
|
|
#define _priq_wait_add _priq_rb_add
|
|
#define _priq_wait_remove _priq_rb_remove
|
|
#define _priq_wait_best _priq_rb_best
|
|
#elif defined(CONFIG_WAITQ_DUMB)
|
|
#define _priq_wait_add _priq_dumb_add
|
|
#define _priq_wait_remove _priq_dumb_remove
|
|
#define _priq_wait_best _priq_dumb_best
|
|
#endif
|
|
|
|
/* the only struct z_kernel instance */
|
|
struct z_kernel _kernel;
|
|
|
|
static struct k_spinlock sched_lock;
|
|
|
|
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
|
|
__key = k_spin_lock(lck); \
|
|
!__i.key; \
|
|
k_spin_unlock(lck, __key), __i.key = 1)
|
|
|
|
static inline int _is_preempt(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_PREEMPT_ENABLED
|
|
/* explanation in kernel_struct.h */
|
|
return thread->base.preempt <= _PREEMPT_THRESHOLD;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static inline int is_metairq(struct k_thread *thread)
|
|
{
|
|
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0
|
|
return (thread->base.prio - K_HIGHEST_THREAD_PRIO)
|
|
< CONFIG_NUM_METAIRQ_PRIORITIES;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_ASSERT
|
|
static inline int _is_thread_dummy(struct k_thread *thread)
|
|
{
|
|
return !!(thread->base.thread_state & _THREAD_DUMMY);
|
|
}
|
|
#endif
|
|
|
|
static inline bool _is_idle(struct k_thread *thread)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return thread->base.is_idle;
|
|
#else
|
|
extern k_tid_t const _idle_thread;
|
|
|
|
return thread == _idle_thread;
|
|
#endif
|
|
}
|
|
|
|
bool _is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2)
|
|
{
|
|
if (t1->base.prio < t2->base.prio) {
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
/* Note that we don't care about wraparound conditions. The
|
|
* expectation is that the application will have arranged to
|
|
* block the threads, change their priorities or reset their
|
|
* deadlines when the job is complete. Letting the deadlines
|
|
* go negative is fine and in fact prevents aliasing bugs.
|
|
*/
|
|
if (t1->base.prio == t2->base.prio) {
|
|
int now = (int) k_cycle_get_32();
|
|
int dt1 = t1->base.prio_deadline - now;
|
|
int dt2 = t2->base.prio_deadline - now;
|
|
|
|
return dt1 < dt2;
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
static ALWAYS_INLINE bool should_preempt(struct k_thread *th, int preempt_ok)
|
|
{
|
|
/* Preemption is OK if it's being explicitly allowed by
|
|
* software state (e.g. the thread called k_yield())
|
|
*/
|
|
if (preempt_ok != 0) {
|
|
return true;
|
|
}
|
|
|
|
__ASSERT(_current != NULL, "");
|
|
|
|
/* Or if we're pended/suspended/dummy (duh) */
|
|
if (_is_thread_prevented_from_running(_current)) {
|
|
return true;
|
|
}
|
|
|
|
/* Edge case on ARM where a thread can be pended out of an
|
|
* interrupt handler before the "synchronous" swap starts
|
|
* context switching. Platforms with atomic swap can never
|
|
* hit this.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SWAP_NONATOMIC)
|
|
&& _is_thread_timeout_active(th)) {
|
|
return true;
|
|
}
|
|
|
|
/* Otherwise we have to be running a preemptible thread or
|
|
* switching to a metairq
|
|
*/
|
|
if (_is_preempt(_current) || is_metairq(th)) {
|
|
return true;
|
|
}
|
|
|
|
/* The idle threads can look "cooperative" if there are no
|
|
* preemptible priorities (this is sort of an API glitch).
|
|
* They must always be preemptible.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_ENABLED) && _is_idle(_current)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_CPU_MASK
|
|
static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq)
|
|
{
|
|
/* With masks enabled we need to be prepared to walk the list
|
|
* looking for one we can run
|
|
*/
|
|
struct k_thread *t;
|
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
|
|
if ((t->base.cpu_mask & BIT(_current_cpu->id)) != 0) {
|
|
return t;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static ALWAYS_INLINE struct k_thread *next_up(void)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
/* In uniprocessor mode, we can leave the current thread in
|
|
* the queue (actually we have to, otherwise the assembly
|
|
* context switch code for all architectures would be
|
|
* responsible for putting it back in _Swap and ISR return!),
|
|
* which makes this choice simple.
|
|
*/
|
|
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
|
|
|
|
return th ? th : _current_cpu->idle_thread;
|
|
#else
|
|
|
|
/* Under SMP, the "cache" mechanism for selecting the next
|
|
* thread doesn't work, so we have more work to do to test
|
|
* _current against the best choice from the queue.
|
|
*
|
|
* Subtle note on "queued": in SMP mode, _current does not
|
|
* live in the queue, so this isn't exactly the same thing as
|
|
* "ready", it means "is _current already added back to the
|
|
* queue such that we don't want to re-add it".
|
|
*/
|
|
int queued = _is_thread_queued(_current);
|
|
int active = !_is_thread_prevented_from_running(_current);
|
|
|
|
/* Choose the best thread that is not current */
|
|
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
|
|
if (th == NULL) {
|
|
th = _current_cpu->idle_thread;
|
|
}
|
|
|
|
if (active) {
|
|
if (!queued &&
|
|
!_is_t1_higher_prio_than_t2(th, _current)) {
|
|
th = _current;
|
|
}
|
|
|
|
if (!should_preempt(th, _current_cpu->swap_ok)) {
|
|
th = _current;
|
|
}
|
|
}
|
|
|
|
/* Put _current back into the queue */
|
|
if (th != _current && active && !_is_idle(_current) && !queued) {
|
|
_priq_run_add(&_kernel.ready_q.runq, _current);
|
|
_mark_thread_as_queued(_current);
|
|
}
|
|
|
|
/* Take the new _current out of the queue */
|
|
if (_is_thread_queued(th)) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, th);
|
|
}
|
|
_mark_thread_as_not_queued(th);
|
|
|
|
return th;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
|
|
static int slice_time;
|
|
static int slice_max_prio;
|
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
/* If _Swap() isn't atomic, then it's possible for a timer interrupt
|
|
* to try to timeslice away _current after it has already pended
|
|
* itself but before the corresponding context switch. Treat that as
|
|
* a noop condition in z_time_slice().
|
|
*/
|
|
static struct k_thread *pending_current;
|
|
#endif
|
|
|
|
static void reset_time_slice(void)
|
|
{
|
|
/* Add the elapsed time since the last announced tick to the
|
|
* slice count, as we'll see those "expired" ticks arrive in a
|
|
* FUTURE z_time_slice() call.
|
|
*/
|
|
_current_cpu->slice_ticks = slice_time + z_clock_elapsed();
|
|
|
|
z_set_timeout_expiry(slice_time, false);
|
|
}
|
|
|
|
void k_sched_time_slice_set(s32_t slice, int prio)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_current_cpu->slice_ticks = 0;
|
|
slice_time = _ms_to_ticks(slice);
|
|
slice_max_prio = prio;
|
|
reset_time_slice();
|
|
}
|
|
}
|
|
|
|
static inline int sliceable(struct k_thread *t)
|
|
{
|
|
return _is_preempt(t)
|
|
&& !_is_prio_higher(t->base.prio, slice_max_prio)
|
|
&& !_is_idle(t)
|
|
&& !_is_thread_timeout_active(t);
|
|
}
|
|
|
|
/* Called out of each timer interrupt */
|
|
void z_time_slice(int ticks)
|
|
{
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
if (pending_current == _current) {
|
|
pending_current = NULL;
|
|
reset_time_slice();
|
|
return;
|
|
}
|
|
pending_current = NULL;
|
|
#endif
|
|
|
|
if (slice_time && sliceable(_current)) {
|
|
if (ticks >= _current_cpu->slice_ticks) {
|
|
_move_thread_to_end_of_prio_q(_current);
|
|
reset_time_slice();
|
|
} else {
|
|
_current_cpu->slice_ticks -= ticks;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static void reset_time_slice(void) { /* !CONFIG_TIMESLICING */ }
|
|
#endif
|
|
|
|
static void update_cache(int preempt_ok)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
struct k_thread *th = next_up();
|
|
|
|
if (should_preempt(th, preempt_ok)) {
|
|
if (th != _current) {
|
|
reset_time_slice();
|
|
}
|
|
_kernel.ready_q.cache = th;
|
|
} else {
|
|
_kernel.ready_q.cache = _current;
|
|
}
|
|
|
|
#else
|
|
/* The way this works is that the CPU record keeps its
|
|
* "cooperative swapping is OK" flag until the next reschedule
|
|
* call or context switch. It doesn't need to be tracked per
|
|
* thread because if the thread gets preempted for whatever
|
|
* reason the scheduler will make the same decision anyway.
|
|
*/
|
|
_current_cpu->swap_ok = preempt_ok;
|
|
#endif
|
|
}
|
|
|
|
void _add_thread_to_ready_q(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_priq_run_add(&_kernel.ready_q.runq, thread);
|
|
_mark_thread_as_queued(thread);
|
|
update_cache(0);
|
|
}
|
|
}
|
|
|
|
void _move_thread_to_end_of_prio_q(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, thread);
|
|
_priq_run_add(&_kernel.ready_q.runq, thread);
|
|
_mark_thread_as_queued(thread);
|
|
update_cache(thread == _current);
|
|
}
|
|
}
|
|
|
|
void _remove_thread_from_ready_q(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
if (_is_thread_queued(thread)) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, thread);
|
|
_mark_thread_as_not_queued(thread);
|
|
update_cache(thread == _current);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
|
|
{
|
|
_remove_thread_from_ready_q(thread);
|
|
_mark_thread_as_pending(thread);
|
|
|
|
if (wait_q != NULL) {
|
|
thread->base.pended_on = wait_q;
|
|
_priq_wait_add(&wait_q->waitq, thread);
|
|
}
|
|
|
|
if (timeout != K_FOREVER) {
|
|
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(timeout);
|
|
|
|
_add_thread_timeout(thread, ticks);
|
|
}
|
|
|
|
sys_trace_thread_pend(thread);
|
|
}
|
|
|
|
void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
|
|
{
|
|
__ASSERT_NO_MSG(thread == _current || _is_thread_dummy(thread));
|
|
pend(thread, wait_q, timeout);
|
|
}
|
|
|
|
static _wait_q_t *pended_on(struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(thread->base.pended_on);
|
|
|
|
return thread->base.pended_on;
|
|
}
|
|
|
|
ALWAYS_INLINE struct k_thread *_find_first_thread_to_unpend(_wait_q_t *wait_q,
|
|
struct k_thread *from)
|
|
{
|
|
ARG_UNUSED(from);
|
|
|
|
struct k_thread *ret = NULL;
|
|
|
|
LOCKED(&sched_lock) {
|
|
ret = _priq_wait_best(&wait_q->waitq);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
ALWAYS_INLINE void _unpend_thread_no_timeout(struct k_thread *thread)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_priq_wait_remove(&pended_on(thread)->waitq, thread);
|
|
_mark_thread_as_not_pending(thread);
|
|
}
|
|
|
|
thread->base.pended_on = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
/* Timeout handler for *_thread_timeout() APIs */
|
|
void z_thread_timeout(struct _timeout *to)
|
|
{
|
|
struct k_thread *th = CONTAINER_OF(to, struct k_thread, base.timeout);
|
|
|
|
if (th->base.pended_on != NULL) {
|
|
_unpend_thread_no_timeout(th);
|
|
}
|
|
_mark_thread_as_started(th);
|
|
_ready_thread(th);
|
|
}
|
|
#endif
|
|
|
|
int _pend_curr_irqlock(u32_t key, _wait_q_t *wait_q, s32_t timeout)
|
|
{
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
#endif
|
|
pend(_current, wait_q, timeout);
|
|
return _Swap_irqlock(key);
|
|
}
|
|
|
|
int _pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
|
|
_wait_q_t *wait_q, s32_t timeout)
|
|
{
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
|
|
pending_current = _current;
|
|
#endif
|
|
pend(_current, wait_q, timeout);
|
|
return _Swap(lock, key);
|
|
}
|
|
|
|
struct k_thread *_unpend_first_thread(_wait_q_t *wait_q)
|
|
{
|
|
struct k_thread *t = _unpend1_no_timeout(wait_q);
|
|
|
|
if (t != NULL) {
|
|
(void)_abort_thread_timeout(t);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
void _unpend_thread(struct k_thread *thread)
|
|
{
|
|
_unpend_thread_no_timeout(thread);
|
|
(void)_abort_thread_timeout(thread);
|
|
}
|
|
|
|
/* FIXME: this API is glitchy when used in SMP. If the thread is
|
|
* currently scheduled on the other CPU, it will silently set it's
|
|
* priority but nothing will cause a reschedule until the next
|
|
* interrupt. An audit seems to show that all current usage is to set
|
|
* priorities on either _current or a pended thread, though, so it's
|
|
* fine for now.
|
|
*/
|
|
void _thread_priority_set(struct k_thread *thread, int prio)
|
|
{
|
|
bool need_sched = 0;
|
|
|
|
LOCKED(&sched_lock) {
|
|
need_sched = _is_thread_ready(thread);
|
|
|
|
if (need_sched) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, thread);
|
|
thread->base.prio = prio;
|
|
_priq_run_add(&_kernel.ready_q.runq, thread);
|
|
update_cache(1);
|
|
} else {
|
|
thread->base.prio = prio;
|
|
}
|
|
}
|
|
sys_trace_thread_priority_set(thread);
|
|
|
|
if (need_sched && _current->base.sched_locked == 0) {
|
|
_reschedule_unlocked();
|
|
}
|
|
}
|
|
|
|
static inline int resched(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (!_current_cpu->swap_ok) {
|
|
return 0;
|
|
}
|
|
_current_cpu->swap_ok = 0;
|
|
#endif
|
|
|
|
return !_is_in_isr();
|
|
}
|
|
|
|
void _reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
|
|
{
|
|
if (resched()) {
|
|
_Swap(lock, key);
|
|
} else {
|
|
k_spin_unlock(lock, key);
|
|
}
|
|
}
|
|
|
|
void _reschedule_irqlock(u32_t key)
|
|
{
|
|
if (resched()) {
|
|
_Swap_irqlock(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
void k_sched_lock(void)
|
|
{
|
|
LOCKED(&sched_lock) {
|
|
_sched_lock();
|
|
}
|
|
}
|
|
|
|
void k_sched_unlock(void)
|
|
{
|
|
#ifdef CONFIG_PREEMPT_ENABLED
|
|
__ASSERT(_current->base.sched_locked != 0, "");
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
LOCKED(&sched_lock) {
|
|
++_current->base.sched_locked;
|
|
update_cache(1);
|
|
}
|
|
|
|
K_DEBUG("scheduler unlocked (%p:%d)\n",
|
|
_current, _current->base.sched_locked);
|
|
|
|
_reschedule_unlocked();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct k_thread *_get_next_ready_thread(void)
|
|
{
|
|
struct k_thread *ret = 0;
|
|
|
|
LOCKED(&sched_lock) {
|
|
ret = next_up();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_USE_SWITCH
|
|
void *_get_next_switch_handle(void *interrupted)
|
|
{
|
|
_current->switch_handle = interrupted;
|
|
|
|
#ifdef CONFIG_SMP
|
|
LOCKED(&sched_lock) {
|
|
struct k_thread *th = next_up();
|
|
|
|
if (_current != th) {
|
|
reset_time_slice();
|
|
_current_cpu->swap_ok = 0;
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_out();
|
|
#endif
|
|
_current = th;
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_in();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#else
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_out();
|
|
#endif
|
|
_current = _get_next_ready_thread();
|
|
#ifdef CONFIG_TRACING
|
|
sys_trace_thread_switched_in();
|
|
#endif
|
|
#endif
|
|
|
|
_check_stack_sentinel();
|
|
|
|
return _current->switch_handle;
|
|
}
|
|
#endif
|
|
|
|
ALWAYS_INLINE void _priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread)
|
|
{
|
|
struct k_thread *t;
|
|
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
|
|
if (_is_t1_higher_prio_than_t2(thread, t)) {
|
|
sys_dlist_insert(&t->base.qnode_dlist,
|
|
&thread->base.qnode_dlist);
|
|
return;
|
|
}
|
|
}
|
|
|
|
sys_dlist_append(pq, &thread->base.qnode_dlist);
|
|
}
|
|
|
|
void _priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
sys_dlist_remove(&thread->base.qnode_dlist);
|
|
}
|
|
|
|
struct k_thread *_priq_dumb_best(sys_dlist_t *pq)
|
|
{
|
|
struct k_thread *t = NULL;
|
|
sys_dnode_t *n = sys_dlist_peek_head(pq);
|
|
|
|
if (n != NULL) {
|
|
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
bool _priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
|
|
{
|
|
struct k_thread *ta, *tb;
|
|
|
|
ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
|
|
tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb);
|
|
|
|
if (_is_t1_higher_prio_than_t2(ta, tb)) {
|
|
return true;
|
|
} else if (_is_t1_higher_prio_than_t2(tb, ta)) {
|
|
return false;
|
|
} else {
|
|
return ta->base.order_key < tb->base.order_key ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
void _priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
|
|
{
|
|
struct k_thread *t;
|
|
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
thread->base.order_key = pq->next_order_key++;
|
|
|
|
/* Renumber at wraparound. This is tiny code, and in practice
|
|
* will almost never be hit on real systems. BUT on very
|
|
* long-running systems where a priq never completely empties
|
|
* AND that contains very large numbers of threads, it can be
|
|
* a latency glitch to loop over all the threads like this.
|
|
*/
|
|
if (!pq->next_order_key) {
|
|
RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
|
|
t->base.order_key = pq->next_order_key++;
|
|
}
|
|
}
|
|
|
|
rb_insert(&pq->tree, &thread->base.qnode_rb);
|
|
}
|
|
|
|
void _priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
|
|
{
|
|
__ASSERT_NO_MSG(!_is_idle(thread));
|
|
|
|
rb_remove(&pq->tree, &thread->base.qnode_rb);
|
|
|
|
if (!pq->tree.root) {
|
|
pq->next_order_key = 0;
|
|
}
|
|
}
|
|
|
|
struct k_thread *_priq_rb_best(struct _priq_rb *pq)
|
|
{
|
|
struct k_thread *t = NULL;
|
|
struct rbnode *n = rb_get_min(&pq->tree);
|
|
|
|
if (n != NULL) {
|
|
t = CONTAINER_OF(n, struct k_thread, base.qnode_rb);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_MULTIQ
|
|
# if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31
|
|
# error Too many priorities for multiqueue scheduler (max 32)
|
|
# endif
|
|
#endif
|
|
|
|
ALWAYS_INLINE void _priq_mq_add(struct _priq_mq *pq, struct k_thread *thread)
|
|
{
|
|
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
|
|
|
|
sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist);
|
|
pq->bitmask |= (1 << priority_bit);
|
|
}
|
|
|
|
ALWAYS_INLINE void _priq_mq_remove(struct _priq_mq *pq, struct k_thread *thread)
|
|
{
|
|
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
|
|
|
|
sys_dlist_remove(&thread->base.qnode_dlist);
|
|
if (sys_dlist_is_empty(&pq->queues[priority_bit])) {
|
|
pq->bitmask &= ~(1 << priority_bit);
|
|
}
|
|
}
|
|
|
|
struct k_thread *_priq_mq_best(struct _priq_mq *pq)
|
|
{
|
|
if (!pq->bitmask) {
|
|
return NULL;
|
|
}
|
|
|
|
struct k_thread *t = NULL;
|
|
sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)];
|
|
sys_dnode_t *n = sys_dlist_peek_head(l);
|
|
|
|
if (n != NULL) {
|
|
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
int _unpend_all(_wait_q_t *wait_q)
|
|
{
|
|
int need_sched = 0;
|
|
struct k_thread *th;
|
|
|
|
while ((th = _waitq_head(wait_q)) != NULL) {
|
|
_unpend_thread(th);
|
|
_ready_thread(th);
|
|
need_sched = 1;
|
|
}
|
|
|
|
return need_sched;
|
|
}
|
|
|
|
void _sched_init(void)
|
|
{
|
|
#ifdef CONFIG_SCHED_DUMB
|
|
sys_dlist_init(&_kernel.ready_q.runq);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_SCALABLE
|
|
_kernel.ready_q.runq = (struct _priq_rb) {
|
|
.tree = {
|
|
.lessthan_fn = _priq_rb_lessthan,
|
|
}
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_MULTIQ
|
|
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
|
|
sys_dlist_init(&_kernel.ready_q.runq.queues[i]);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE,
|
|
CONFIG_TIMESLICE_PRIORITY);
|
|
#endif
|
|
}
|
|
|
|
int _impl_k_thread_priority_get(k_tid_t thread)
|
|
{
|
|
return thread->base.prio;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD,
|
|
struct k_thread *);
|
|
#endif
|
|
|
|
void _impl_k_thread_priority_set(k_tid_t tid, int prio)
|
|
{
|
|
/*
|
|
* Use NULL, since we cannot know what the entry point is (we do not
|
|
* keep track of it) and idle cannot change its priority.
|
|
*/
|
|
_ASSERT_VALID_PRIO(prio, NULL);
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
struct k_thread *thread = (struct k_thread *)tid;
|
|
|
|
_thread_priority_set(thread, prio);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio)
|
|
{
|
|
struct k_thread *thread = (struct k_thread *)thread_p;
|
|
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
|
|
"invalid thread priority %d", (int)prio));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio,
|
|
"thread priority may only be downgraded (%d < %d)",
|
|
prio, thread->base.prio));
|
|
|
|
_impl_k_thread_priority_set((k_tid_t)thread, prio);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
void _impl_k_thread_deadline_set(k_tid_t tid, int deadline)
|
|
{
|
|
struct k_thread *th = tid;
|
|
|
|
LOCKED(&sched_lock) {
|
|
th->base.prio_deadline = k_cycle_get_32() + deadline;
|
|
if (_is_thread_queued(th)) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, th);
|
|
_priq_run_add(&_kernel.ready_q.runq, th);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_thread_deadline_set, thread_p, deadline)
|
|
{
|
|
struct k_thread *thread = (struct k_thread *)thread_p;
|
|
|
|
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0,
|
|
"invalid thread deadline %d",
|
|
(int)deadline));
|
|
|
|
_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
|
|
return 0;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void _impl_k_yield(void)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
if (!_is_idle(_current)) {
|
|
LOCKED(&sched_lock) {
|
|
_priq_run_remove(&_kernel.ready_q.runq, _current);
|
|
_priq_run_add(&_kernel.ready_q.runq, _current);
|
|
update_cache(1);
|
|
}
|
|
}
|
|
|
|
_Swap_unlocked();
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield);
|
|
#endif
|
|
|
|
s32_t _impl_k_sleep(s32_t duration)
|
|
{
|
|
#ifdef CONFIG_MULTITHREADING
|
|
u32_t expected_wakeup_time;
|
|
s32_t ticks;
|
|
|
|
__ASSERT(!_is_in_isr(), "");
|
|
__ASSERT(duration != K_FOREVER, "");
|
|
|
|
K_DEBUG("thread %p for %d ns\n", _current, duration);
|
|
|
|
/* wait of 0 ms is treated as a 'yield' */
|
|
if (duration == 0) {
|
|
k_yield();
|
|
return 0;
|
|
}
|
|
|
|
ticks = _TICK_ALIGN + _ms_to_ticks(duration);
|
|
expected_wakeup_time = ticks + z_tick_get_32();
|
|
|
|
/* Spinlock purely for local interrupt locking to prevent us
|
|
* from being interrupted while _current is in an intermediate
|
|
* state. Should unify this implementation with pend().
|
|
*/
|
|
struct k_spinlock local_lock = {};
|
|
k_spinlock_key_t key = k_spin_lock(&local_lock);
|
|
|
|
_remove_thread_from_ready_q(_current);
|
|
_add_thread_timeout(_current, ticks);
|
|
|
|
(void)_Swap(&local_lock, key);
|
|
|
|
ticks = expected_wakeup_time - z_tick_get_32();
|
|
if (ticks > 0) {
|
|
return __ticks_to_ms(ticks);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_sleep, duration)
|
|
{
|
|
/* FIXME there were some discussions recently on whether we should
|
|
* relax this, thread would be unscheduled until k_wakeup issued
|
|
*/
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(duration != K_FOREVER,
|
|
"sleeping forever not allowed"));
|
|
|
|
return _impl_k_sleep(duration);
|
|
}
|
|
#endif
|
|
|
|
void _impl_k_wakeup(k_tid_t thread)
|
|
{
|
|
if (_is_thread_pending(thread)) {
|
|
return;
|
|
}
|
|
|
|
if (_abort_thread_timeout(thread) < 0) {
|
|
return;
|
|
}
|
|
|
|
_ready_thread(thread);
|
|
|
|
if (!_is_in_isr()) {
|
|
_reschedule_unlocked();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t);
|
|
#endif
|
|
|
|
k_tid_t _impl_k_current_get(void)
|
|
{
|
|
return _current;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER0_SIMPLE(k_current_get);
|
|
#endif
|
|
|
|
int _impl_k_is_preempt_thread(void)
|
|
{
|
|
return !_is_in_isr() && _is_preempt(_current);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_CPU_MASK
|
|
# ifdef CONFIG_SMP
|
|
/* Right now we use a single byte for this mask */
|
|
BUILD_ASSERT_MSG(CONFIG_MP_NUM_CPUS <= 8, "Too many CPUs for mask word");
|
|
# endif
|
|
|
|
|
|
static int cpu_mask_mod(k_tid_t t, u32_t enable_mask, u32_t disable_mask)
|
|
{
|
|
int ret = 0;
|
|
|
|
LOCKED(&sched_lock) {
|
|
if (_is_thread_prevented_from_running(t)) {
|
|
t->base.cpu_mask |= enable_mask;
|
|
t->base.cpu_mask &= ~disable_mask;
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int k_thread_cpu_mask_clear(k_tid_t thread)
|
|
{
|
|
return cpu_mask_mod(thread, 0, 0xffffffff);
|
|
}
|
|
|
|
int k_thread_cpu_mask_enable_all(k_tid_t thread)
|
|
{
|
|
return cpu_mask_mod(thread, 0xffffffff, 0);
|
|
}
|
|
|
|
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
|
|
{
|
|
return cpu_mask_mod(thread, BIT(cpu), 0);
|
|
}
|
|
|
|
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
|
|
{
|
|
return cpu_mask_mod(thread, 0, BIT(cpu));
|
|
}
|
|
|
|
#endif /* CONFIG_SCHED_CPU_MASK */
|