zephyr/kernel/sem.c
Andy Ross da37a53a54 kernel/k_sem: Spinlockify
Switch semaphores to use a subsystem spinlock instead of the system
irqlock.

Note that this is only "half way there".  Semaphores will no longer
contend with other irqlock users on SMP systems, but all semaphores
are still sharing the same lock.  Really we want semaphores to be
independently synchronized, but adding 4 bytes to every one (there are
a LOT of these things) for a separate spinlock is too much to pay.

Rather, a proper SMP-aware implementation would spin on the count
variable directly.  But let's not rock that boat quite yet.

Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
2019-02-08 14:49:39 -05:00

174 lines
4.3 KiB
C

/*
* Copyright (c) 2010-2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
*
* @brief Kernel semaphore object.
*
* The semaphores are of the 'counting' type, i.e. each 'give' operation will
* increment the internal count by 1, if no thread is pending on it. The 'init'
* call initializes the count to 'initial_count'. Following multiple 'give'
* operations, the same number of 'take' operations can be performed without
* the calling thread having to pend on the semaphore, or the calling task
* having to poll.
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <debug/object_tracing_common.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <wait_q.h>
#include <misc/dlist.h>
#include <ksched.h>
#include <init.h>
#include <syscall_handler.h>
#include <tracing.h>
extern struct k_sem _k_sem_list_start[];
extern struct k_sem _k_sem_list_end[];
/* We use a system-wide lock to synchronize semaphores, which has
* unfortunate performance impact vs. using a per-object lock
* (semaphores are *very* widely used). But per-object locks require
* significant extra RAM. A properly spin-aware semaphore
* implementation would spin on atomic access to the count variable,
* and not a spinlock per se. Useful optimization for the future...
*/
static struct k_spinlock lock;
#ifdef CONFIG_OBJECT_TRACING
struct k_sem *_trace_list_k_sem;
/*
* Complete initialization of statically defined semaphores.
*/
static int init_sem_module(struct device *dev)
{
ARG_UNUSED(dev);
struct k_sem *sem;
for (sem = _k_sem_list_start; sem < _k_sem_list_end; sem++) {
SYS_TRACING_OBJ_INIT(k_sem, sem);
}
return 0;
}
SYS_INIT(init_sem_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJECT_TRACING */
void _impl_k_sem_init(struct k_sem *sem, unsigned int initial_count,
unsigned int limit)
{
__ASSERT(limit != 0U, "limit cannot be zero");
__ASSERT(initial_count <= limit, "count cannot be greater than limit");
sys_trace_void(SYS_TRACE_ID_SEMA_INIT);
sem->count = initial_count;
sem->limit = limit;
_waitq_init(&sem->wait_q);
#if defined(CONFIG_POLL)
sys_dlist_init(&sem->poll_events);
#endif
SYS_TRACING_OBJ_INIT(k_sem, sem);
_k_object_init(sem);
sys_trace_end_call(SYS_TRACE_ID_SEMA_INIT);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_sem_init, sem, initial_count, limit)
{
Z_OOPS(Z_SYSCALL_OBJ_INIT(sem, K_OBJ_SEM));
Z_OOPS(Z_SYSCALL_VERIFY(limit != 0 && initial_count <= limit));
_impl_k_sem_init((struct k_sem *)sem, initial_count, limit);
return 0;
}
#endif
static inline void handle_poll_events(struct k_sem *sem)
{
#ifdef CONFIG_POLL
_handle_obj_poll_events(&sem->poll_events, K_POLL_STATE_SEM_AVAILABLE);
#else
ARG_UNUSED(sem);
#endif
}
static inline void increment_count_up_to_limit(struct k_sem *sem)
{
sem->count += (sem->count != sem->limit) ? 1U : 0U;
}
static void do_sem_give(struct k_sem *sem)
{
struct k_thread *thread = _unpend_first_thread(&sem->wait_q);
if (thread != NULL) {
_ready_thread(thread);
_set_thread_return_value(thread, 0);
} else {
increment_count_up_to_limit(sem);
handle_poll_events(sem);
}
}
void _impl_k_sem_give(struct k_sem *sem)
{
k_spinlock_key_t key = k_spin_lock(&lock);
sys_trace_void(SYS_TRACE_ID_SEMA_GIVE);
do_sem_give(sem);
sys_trace_end_call(SYS_TRACE_ID_SEMA_GIVE);
_reschedule(&lock, key);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_sem_give, K_OBJ_SEM, struct k_sem *);
#endif
int _impl_k_sem_take(struct k_sem *sem, s32_t timeout)
{
__ASSERT(((_is_in_isr() == false) || (timeout == K_NO_WAIT)), "");
sys_trace_void(SYS_TRACE_ID_SEMA_TAKE);
k_spinlock_key_t key = k_spin_lock(&lock);
if (likely(sem->count > 0U)) {
sem->count--;
k_spin_unlock(&lock, key);
sys_trace_end_call(SYS_TRACE_ID_SEMA_TAKE);
return 0;
}
if (timeout == K_NO_WAIT) {
k_spin_unlock(&lock, key);
sys_trace_end_call(SYS_TRACE_ID_SEMA_TAKE);
return -EBUSY;
}
sys_trace_end_call(SYS_TRACE_ID_SEMA_TAKE);
int ret = _pend_curr(&lock, key, &sem->wait_q, timeout);
return ret;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_sem_take, sem, timeout)
{
Z_OOPS(Z_SYSCALL_OBJ(sem, K_OBJ_SEM));
return _impl_k_sem_take((struct k_sem *)sem, timeout);
}
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_sem_reset, K_OBJ_SEM, struct k_sem *);
Z_SYSCALL_HANDLER1_SIMPLE(k_sem_count_get, K_OBJ_SEM, struct k_sem *);
#endif