75f77db432
There are issues using lowercase min and max macros when compiling a C++ application with a third-party toolchain such as GNU ARM Embedded when using some STL headers i.e. <chrono>. This is because there are actual C++ functions called min and max defined in some of the STL headers and these macros interfere with them. By changing the macros to UPPERCASE, which is consistent with almost all other pre-processor macros this naming conflict is avoided. All files that use these macros have been updated. Signed-off-by: Carlos Stuart <carlosstuart1970@gmail.com>
264 lines
5 KiB
C
264 lines
5 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <timeout_q.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <sys_clock.h>
|
|
#include <spinlock.h>
|
|
#include <ksched.h>
|
|
#include <syscall_handler.h>
|
|
|
|
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
|
|
__key = k_spin_lock(lck); \
|
|
!__i.key; \
|
|
k_spin_unlock(lck, __key), __i.key = 1)
|
|
|
|
static u64_t curr_tick;
|
|
|
|
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
|
|
|
|
static struct k_spinlock timeout_lock;
|
|
|
|
static bool can_wait_forever;
|
|
|
|
/* Cycles left to process in the currently-executing z_clock_announce() */
|
|
static int announce_remaining;
|
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
|
|
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
|
|
#endif
|
|
|
|
static struct _timeout *first(void)
|
|
{
|
|
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
|
|
|
|
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
|
|
}
|
|
|
|
static struct _timeout *next(struct _timeout *t)
|
|
{
|
|
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
|
|
|
|
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
|
|
}
|
|
|
|
static void remove_timeout(struct _timeout *t)
|
|
{
|
|
if (next(t) != NULL) {
|
|
next(t)->dticks += t->dticks;
|
|
}
|
|
|
|
sys_dlist_remove(&t->node);
|
|
}
|
|
|
|
static s32_t elapsed(void)
|
|
{
|
|
return announce_remaining == 0 ? z_clock_elapsed() : 0;
|
|
}
|
|
|
|
static s32_t next_timeout(void)
|
|
{
|
|
int maxw = can_wait_forever ? K_FOREVER : INT_MAX;
|
|
struct _timeout *to = first();
|
|
s32_t ret = to == NULL ? maxw : MAX(0, to->dticks - elapsed());
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
|
|
ret = _current_cpu->slice_ticks;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void _add_timeout(struct _timeout *to, _timeout_func_t fn, s32_t ticks)
|
|
{
|
|
__ASSERT(!sys_dnode_is_linked(&to->node), "");
|
|
to->fn = fn;
|
|
ticks = MAX(1, ticks);
|
|
|
|
LOCKED(&timeout_lock) {
|
|
struct _timeout *t;
|
|
|
|
to->dticks = ticks + elapsed();
|
|
for (t = first(); t != NULL; t = next(t)) {
|
|
__ASSERT(t->dticks >= 0, "");
|
|
|
|
if (t->dticks > to->dticks) {
|
|
t->dticks -= to->dticks;
|
|
sys_dlist_insert(&t->node, &to->node);
|
|
break;
|
|
}
|
|
to->dticks -= t->dticks;
|
|
}
|
|
|
|
if (t == NULL) {
|
|
sys_dlist_append(&timeout_list, &to->node);
|
|
}
|
|
|
|
if (to == first()) {
|
|
z_clock_set_timeout(next_timeout(), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
int _abort_timeout(struct _timeout *to)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
if (sys_dnode_is_linked(&to->node)) {
|
|
remove_timeout(to);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
s32_t z_timeout_remaining(struct _timeout *timeout)
|
|
{
|
|
s32_t ticks = 0;
|
|
|
|
if (_is_inactive_timeout(timeout)) {
|
|
return 0;
|
|
}
|
|
|
|
LOCKED(&timeout_lock) {
|
|
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
|
|
ticks += t->dticks;
|
|
if (timeout == t) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ticks;
|
|
}
|
|
|
|
s32_t _get_next_timeout_expiry(void)
|
|
{
|
|
s32_t ret = K_FOREVER;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
ret = next_timeout();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void z_set_timeout_expiry(s32_t ticks, bool idle)
|
|
{
|
|
LOCKED(&timeout_lock) {
|
|
int next = next_timeout();
|
|
bool sooner = (next == K_FOREVER) || (ticks < next);
|
|
bool imminent = next <= 1;
|
|
|
|
/* Only set new timeouts when they are sooner than
|
|
* what we have. Also don't try to set a timeout when
|
|
* one is about to expire: drivers have internal logic
|
|
* that will bump the timeout to the "next" tick if
|
|
* it's not considered to be settable as directed.
|
|
*/
|
|
if (sooner && !imminent) {
|
|
z_clock_set_timeout(ticks, idle);
|
|
}
|
|
}
|
|
}
|
|
|
|
void z_clock_announce(s32_t ticks)
|
|
{
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_time_slice(ticks);
|
|
#endif
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
|
|
|
|
announce_remaining = ticks;
|
|
|
|
while (first() != NULL && first()->dticks <= announce_remaining) {
|
|
struct _timeout *t = first();
|
|
int dt = t->dticks;
|
|
|
|
curr_tick += dt;
|
|
announce_remaining -= dt;
|
|
t->dticks = 0;
|
|
remove_timeout(t);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
t->fn(t);
|
|
key = k_spin_lock(&timeout_lock);
|
|
}
|
|
|
|
if (first() != NULL) {
|
|
first()->dticks -= announce_remaining;
|
|
}
|
|
|
|
curr_tick += announce_remaining;
|
|
announce_remaining = 0;
|
|
|
|
z_clock_set_timeout(next_timeout(), false);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
}
|
|
|
|
int k_enable_sys_clock_always_on(void)
|
|
{
|
|
int ret = !can_wait_forever;
|
|
|
|
can_wait_forever = 0;
|
|
return ret;
|
|
}
|
|
|
|
void k_disable_sys_clock_always_on(void)
|
|
{
|
|
can_wait_forever = 1;
|
|
}
|
|
|
|
s64_t z_tick_get(void)
|
|
{
|
|
u64_t t = 0U;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
t = curr_tick + z_clock_elapsed();
|
|
}
|
|
return t;
|
|
}
|
|
|
|
u32_t z_tick_get_32(void)
|
|
{
|
|
#ifdef CONFIG_TICKLESS_KERNEL
|
|
return (u32_t)z_tick_get();
|
|
#else
|
|
return (u32_t)curr_tick;
|
|
#endif
|
|
}
|
|
|
|
u32_t _impl_k_uptime_get_32(void)
|
|
{
|
|
return __ticks_to_ms(z_tick_get_32());
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_uptime_get_32)
|
|
{
|
|
return _impl_k_uptime_get_32();
|
|
}
|
|
#endif
|
|
|
|
s64_t _impl_k_uptime_get(void)
|
|
{
|
|
return __ticks_to_ms(z_tick_get());
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_uptime_get, ret_p)
|
|
{
|
|
u64_t *ret = (u64_t *)ret_p;
|
|
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret)));
|
|
*ret = _impl_k_uptime_get();
|
|
return 0;
|
|
}
|
|
#endif
|