zephyr/subsys/net/l2/ieee802154/ieee802154_6lo_fragment.c
Daniel Leung 5bc08ae3c6 net: rename shadow variables
Renames shadow variables found by -Wshadow.

Signed-off-by: Daniel Leung <daniel.leung@intel.com>
2023-08-10 08:14:43 +00:00

589 lines
14 KiB
C

/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief 802.15.4 6LoWPAN fragment handler implementation
*/
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(net_ieee802154_6lo_fragment, CONFIG_NET_L2_IEEE802154_LOG_LEVEL);
#include "6lo.h"
#include "6lo_private.h"
#include "ieee802154_6lo_fragment.h"
#include "net_private.h"
#include <errno.h>
#include <zephyr/net/net_core.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/net_stats.h>
#include <zephyr/net/udp.h>
#define NET_FRAG_DISPATCH_MASK 0xF8
#define NET_FRAG_OFFSET_POS (NET_6LO_FRAG_DATAGRAM_SIZE_LEN + NET_6LO_FRAG_DATAGRAM_OFFSET_LEN)
#define BUF_TIMEOUT K_MSEC(50)
#define FRAG_REASSEMBLY_TIMEOUT K_SECONDS(CONFIG_NET_L2_IEEE802154_REASSEMBLY_TIMEOUT)
#define REASS_CACHE_SIZE CONFIG_NET_L2_IEEE802154_FRAGMENT_REASS_CACHE_SIZE
/**
* Reassemble cache : Depends on cache size it used for reassemble
* IPv6 packets simultaneously.
*/
struct frag_cache {
struct k_work_delayable timer; /* Reassemble timer */
struct net_pkt *pkt; /* Reassemble packet */
uint16_t size; /* Datagram size */
uint16_t tag; /* Datagram tag */
bool used;
};
static struct frag_cache cache[REASS_CACHE_SIZE];
/**
* RFC 4944, section 5.3
* If an entire payload (e.g., IPv6) datagram fits within a single 802.15.4
* frame, it is unfragmented and the LoWPAN encapsulation should not contain
* a fragmentation header. If the datagram does not fit within a single
* IEEE 802.15.4 frame, it SHALL be broken into link fragments. As the
* fragment offset can only express multiples of eight bytes, all link
* fragments for a datagram except the last one MUST be multiples of eight
* bytes in length.
*
* RFC 7668, section 3 (IPv6 over Bluetooth Low Energy)
* Functionality is comprised of link-local IPv6 addresses and stateless
* IPv6 address autoconfiguration, Neighbor Discovery, and header compression
* Fragmentation features from 6LoWPAN standards are not used due to Bluetooth
* LE's link-layer fragmentation support.
*/
/**
* 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |1 1 0 0 0| datagram_size | datagram_tag |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |1 1 0 0 0| datagram_size | datagram_tag |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |datagram_offset|
* +-+-+-+-+-+-+-+-+
*/
static inline void set_datagram_size(uint8_t *ptr, uint16_t size)
{
ptr[0] |= ((size & 0x7FF) >> 8);
ptr[1] = (uint8_t)size;
}
static inline void set_datagram_tag(uint8_t *ptr, uint16_t tag)
{
ptr[0] = tag >> 8;
ptr[1] = (uint8_t)tag;
}
static inline void set_up_frag_hdr(struct net_buf *frag, uint16_t size, uint8_t offset)
{
static uint16_t datagram_tag;
bool is_first_frag = !offset;
uint8_t pos = frag->len;
if (is_first_frag) {
datagram_tag++;
net_buf_add(frag, NET_6LO_FRAG1_HDR_LEN);
frag->data[pos] = NET_6LO_DISPATCH_FRAG1;
} else {
net_buf_add(frag, NET_6LO_FRAGN_HDR_LEN);
frag->data[pos] = NET_6LO_DISPATCH_FRAGN;
}
set_datagram_size(frag->data + pos, size);
pos += NET_6LO_FRAG_DATAGRAM_SIZE_LEN;
set_datagram_tag(frag->data + pos, datagram_tag);
pos += NET_6LO_FRAG_DATAGRAM_OFFSET_LEN;
if (!is_first_frag) {
frag->data[pos] = offset;
}
}
static inline uint8_t calc_payload_capacity(struct net_buf *frag)
{
uint8_t capacity = frag->size - frag->len;
return (capacity & 0xF8);
}
static inline uint8_t copy_data(struct ieee802154_6lo_fragment_ctx *ctx, struct net_buf *frame_buf,
uint8_t capacity)
{
uint8_t remainder = ctx->buf->len - (ctx->pos - ctx->buf->data);
uint8_t move = MIN(remainder, capacity);
memcpy(frame_buf->data + frame_buf->len, ctx->pos, move);
net_buf_add(frame_buf, move);
return move;
}
static inline void update_fragment_ctx(struct ieee802154_6lo_fragment_ctx *ctx, uint8_t moved)
{
uint8_t remainder = (ctx->buf->len - (ctx->pos - ctx->buf->data));
bool next_frag = moved == remainder;
if (next_frag) {
ctx->buf = ctx->buf->frags;
if (ctx->buf) {
ctx->pos = ctx->buf->data;
}
} else {
ctx->pos += moved;
}
}
/**
* ch : compressed (IPv6) header(s)
* fh : fragment header (dispatch + size + tag + [offset])
* p : payload (first fragment holds IPv6 hdr as payload)
* e : empty space
* ll : link layer
*
* Input frame_buf to ieee802154_6lo_fragment() looks like below
*
* | ll |
*
* After fragment creation, frame_buf will look like:
*
* | ll + fh + p + e |
*
* p being taken from current pkt buffer and position.
*
* Space in every fragment is because fragment payload should be multiple
* of 8 octets (we have predefined packets at compile time, data packet mtu
* is set already).
*
* If it's the first fragment being created, fh will not own any offset
* (so it will be 1 byte smaller)
*/
struct net_buf *ieee802154_6lo_fragment(struct ieee802154_6lo_fragment_ctx *ctx,
struct net_buf *frame_buf, bool iphc)
{
uint8_t capacity;
set_up_frag_hdr(frame_buf, ctx->pkt_size, ctx->offset);
capacity = calc_payload_capacity(frame_buf);
ctx->processed += capacity;
bool is_first_frag = !ctx->offset;
if (is_first_frag) {
/* First fragment needs to take into account 6lo */
if (iphc) {
capacity -= ctx->hdr_diff;
} else {
/* Adding IPv6 dispatch header */
capacity += 1U;
}
}
while (capacity && ctx->buf) {
uint8_t moved = copy_data(ctx, frame_buf, capacity);
update_fragment_ctx(ctx, moved);
capacity -= moved;
}
ctx->offset = ctx->processed >> 3;
return ctx->buf;
}
static inline uint8_t get_datagram_type(uint8_t *ptr)
{
return ptr[0] & NET_FRAG_DISPATCH_MASK;
}
static inline uint16_t get_datagram_size(uint8_t *ptr)
{
return ((ptr[0] & 0x1F) << 8) | ptr[1];
}
static inline uint16_t get_datagram_tag(uint8_t *ptr)
{
return (ptr[0] << 8) | ptr[1];
}
static void update_protocol_header_lengths(struct net_pkt *pkt, uint16_t size)
{
NET_PKT_DATA_ACCESS_DEFINE(ipv6_access, struct net_ipv6_hdr);
struct net_ipv6_hdr *ipv6;
ipv6 = (struct net_ipv6_hdr *)net_pkt_get_data(pkt, &ipv6_access);
if (!ipv6) {
NET_ERR("could not get IPv6 header");
return;
}
net_pkt_set_ip_hdr_len(pkt, NET_IPV6H_LEN);
ipv6->len = htons(size - NET_IPV6H_LEN);
net_pkt_set_data(pkt, &ipv6_access);
if (ipv6->nexthdr == IPPROTO_UDP) {
NET_PKT_DATA_ACCESS_DEFINE(udp_access, struct net_udp_hdr);
struct net_udp_hdr *udp;
udp = (struct net_udp_hdr *)net_pkt_get_data(pkt, &udp_access);
if (udp) {
udp->len = htons(size - NET_IPV6H_LEN);
net_pkt_set_data(pkt, &udp_access);
} else {
NET_ERR("could not get UDP header");
}
}
}
static inline void clear_reass_cache(uint16_t size, uint16_t tag)
{
uint8_t i;
for (i = 0U; i < REASS_CACHE_SIZE; i++) {
if (!(cache[i].size == size && cache[i].tag == tag)) {
continue;
}
if (cache[i].pkt) {
net_pkt_unref(cache[i].pkt);
}
cache[i].pkt = NULL;
cache[i].size = 0U;
cache[i].tag = 0U;
cache[i].used = false;
k_work_cancel_delayable(&cache[i].timer);
}
}
/**
* If the reassembly not completed within reassembly timeout discard
* the whole packet.
*/
static void reass_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct frag_cache *fcache = CONTAINER_OF(dwork, struct frag_cache, timer);
if (fcache->pkt) {
net_pkt_unref(fcache->pkt);
}
fcache->pkt = NULL;
fcache->size = 0U;
fcache->tag = 0U;
fcache->used = false;
}
/**
* Upon reception of first fragment with respective of size and tag
* create a new cache. If number of unused cache are out then
* discard the fragments.
*/
static inline struct frag_cache *set_reass_cache(struct net_pkt *pkt, uint16_t size, uint16_t tag)
{
int i;
for (i = 0; i < REASS_CACHE_SIZE; i++) {
if (cache[i].used) {
continue;
}
cache[i].pkt = pkt;
cache[i].size = size;
cache[i].tag = tag;
cache[i].used = true;
k_work_init_delayable(&cache[i].timer, reass_timeout);
k_work_reschedule(&cache[i].timer, FRAG_REASSEMBLY_TIMEOUT);
return &cache[i];
}
return NULL;
}
/**
* Return cache if it matches with size and tag of stored caches,
* otherwise return NULL.
*/
static inline struct frag_cache *get_reass_cache(uint16_t size, uint16_t tag)
{
uint8_t i;
for (i = 0U; i < REASS_CACHE_SIZE; i++) {
if (cache[i].used) {
if (cache[i].size == size && cache[i].tag == tag) {
return &cache[i];
}
}
}
return NULL;
}
static inline void fragment_append(struct net_pkt *pkt, struct net_buf *frag)
{
if (get_datagram_type(frag->data) == NET_6LO_DISPATCH_FRAG1) {
/* Always make sure first fragment is inserted first
* This will be useful for fragment_cached_pkt_len()
*/
frag->frags = pkt->buffer;
pkt->buffer = frag;
} else {
net_pkt_append_buffer(pkt, frag);
}
}
static inline size_t fragment_cached_pkt_len(struct net_pkt *pkt)
{
size_t len = 0U;
struct net_buf *frag;
int hdr_diff;
uint8_t *data;
frag = pkt->buffer;
while (frag) {
uint16_t frag_hdr_len = NET_6LO_FRAGN_HDR_LEN;
if (get_datagram_type(frag->data) == NET_6LO_DISPATCH_FRAG1) {
frag_hdr_len = NET_6LO_FRAG1_HDR_LEN;
}
len += frag->len - frag_hdr_len;
frag = frag->frags;
}
/* 6lo assumes that fragment header has been removed,
* and in our side we assume first buffer is always the first fragment.
*/
data = pkt->buffer->data;
pkt->buffer->data += NET_6LO_FRAG1_HDR_LEN;
hdr_diff = net_6lo_uncompress_hdr_diff(pkt);
pkt->buffer->data = data;
if (hdr_diff == INT_MAX) {
return 0;
}
return len + hdr_diff;
}
static inline uint16_t fragment_offset(struct net_buf *frag)
{
if (get_datagram_type(frag->data) == NET_6LO_DISPATCH_FRAG1) {
return 0;
}
return ((uint16_t)frag->data[NET_FRAG_OFFSET_POS] << 3);
}
static void fragment_move_back(struct net_pkt *pkt, struct net_buf *frag, struct net_buf *stop)
{
struct net_buf *prev, *current;
prev = NULL;
current = pkt->buffer;
while (current && current != stop) {
if (fragment_offset(frag) < fragment_offset(current)) {
if (prev) {
prev->frags = frag;
}
frag->frags = current;
break;
}
prev = current;
current = current->frags;
}
}
static inline void fragment_remove_headers(struct net_pkt *pkt)
{
struct net_buf *frag;
frag = pkt->buffer;
while (frag) {
uint16_t frag_hdr_len = NET_6LO_FRAGN_HDR_LEN;
if (get_datagram_type(frag->data) == NET_6LO_DISPATCH_FRAG1) {
frag_hdr_len = NET_6LO_FRAG1_HDR_LEN;
}
memmove(frag->data, frag->data + frag_hdr_len, frag->len - frag_hdr_len);
frag->len -= frag_hdr_len;
frag = frag->frags;
}
}
static inline void fragment_reconstruct_packet(struct net_pkt *pkt)
{
struct net_buf *prev, *current, *next;
prev = NULL;
current = pkt->buffer;
while (current) {
next = current->frags;
if (!prev || (fragment_offset(prev) > fragment_offset(current))) {
prev = current;
} else {
fragment_move_back(pkt, current, prev);
}
current = next;
}
/* Let's remove now useless fragmentation headers */
fragment_remove_headers(pkt);
}
static inline bool fragment_packet_valid(struct net_pkt *pkt)
{
return (get_datagram_type(pkt->buffer->data) == NET_6LO_DISPATCH_FRAG1);
}
/**
* Parse size and tag from the fragment, check if we have any cache
* related to it. If not create a new cache.
* Remove the fragmentation header and uncompress IPv6 and related headers.
* Cache Rx part of fragment along with data buf for the first fragment
* in the cache, remaining fragments just cache data fragment, unref
* RX pkt. So in both the cases caller can assume packet is consumed.
*/
static inline enum net_verdict fragment_add_to_cache(struct net_pkt *pkt)
{
bool first_frag = false;
struct frag_cache *fcache;
struct net_buf *frag;
uint16_t size;
uint16_t tag;
uint8_t type;
frag = pkt->buffer;
type = get_datagram_type(frag->data);
if ((type == NET_6LO_DISPATCH_FRAG1 && frag->len < NET_6LO_FRAG1_HDR_LEN) ||
(type == NET_6LO_DISPATCH_FRAGN && frag->len < NET_6LO_FRAGN_HDR_LEN)) {
return NET_DROP;
}
/* Parse total size of packet */
size = get_datagram_size(frag->data);
/* Parse the datagram tag */
tag = get_datagram_tag(frag->data + NET_6LO_FRAG_DATAGRAM_SIZE_LEN);
/* If there are no fragments in the cache means this frag
* is the first one. So cache Rx pkt otherwise not.
*/
pkt->buffer = NULL;
fcache = get_reass_cache(size, tag);
if (!fcache) {
fcache = set_reass_cache(pkt, size, tag);
if (!fcache) {
NET_ERR("Could not get a cache entry");
pkt->buffer = frag;
return NET_DROP;
}
first_frag = true;
}
fragment_append(fcache->pkt, frag);
if (fragment_cached_pkt_len(fcache->pkt) == fcache->size) {
if (!first_frag) {
/* Assign buffer back to input packet. */
pkt->buffer = fcache->pkt->buffer;
fcache->pkt->buffer = NULL;
} else {
/* in case pkt == fcache->pkt, we don't want
* to unref it while clearing the cach.
*/
fcache->pkt = NULL;
}
clear_reass_cache(size, tag);
if (!fragment_packet_valid(pkt)) {
NET_ERR("Invalid fragmented packet");
return NET_DROP;
}
fragment_reconstruct_packet(pkt);
if (!net_6lo_uncompress(pkt)) {
NET_ERR("Could not uncompress. Bogus packet?");
return NET_DROP;
}
net_pkt_cursor_init(pkt);
update_protocol_header_lengths(pkt, size);
net_pkt_cursor_init(pkt);
NET_DBG("All fragments received and reassembled");
return NET_CONTINUE;
}
/* Unref Rx part of original packet */
if (!first_frag) {
net_pkt_unref(pkt);
}
return NET_OK;
}
enum net_verdict ieee802154_6lo_reassemble(struct net_pkt *pkt)
{
if (!pkt || !pkt->buffer) {
NET_ERR("Nothing to reassemble");
return NET_DROP;
}
if (get_datagram_type(pkt->buffer->data) >= NET_6LO_DISPATCH_FRAG1) {
return fragment_add_to_cache(pkt);
} else {
NET_DBG("No frag dispatch (%02x)", pkt->buffer->data[0]);
/* Received unfragmented packet, uncompress */
if (net_6lo_uncompress(pkt)) {
return NET_CONTINUE;
}
NET_ERR("Could not uncompress. Bogus packet?");
}
return NET_DROP;
}