d622533ca7
When allowing dynamic thread stack allocation the stack may come from the heap in coherent memory, trying to use cached memory is over complicated because of heap meta data and cache line sizes. Also when userspace is enabled, stacks have to be page aligned and the address of the stack is used to track kernel objects. Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
1223 lines
32 KiB
C
1223 lines
32 KiB
C
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Kernel thread support
|
|
*
|
|
* This module provides general purpose thread support.
|
|
*/
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/sys/math_extras.h>
|
|
#include <zephyr/sys_clock.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <zephyr/internal/syscall_handler.h>
|
|
#include <kernel_internal.h>
|
|
#include <kswap.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/tracing/tracing.h>
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
#include <zephyr/irq_offload.h>
|
|
#include <zephyr/sys/check.h>
|
|
#include <zephyr/random/random.h>
|
|
#include <zephyr/sys/atomic.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/llext/symbol.h>
|
|
#include <zephyr/sys/iterable_sections.h>
|
|
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
#ifdef CONFIG_OBJ_CORE_THREAD
|
|
static struct k_obj_type obj_type_thread;
|
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
|
|
static struct k_obj_core_stats_desc thread_stats_desc = {
|
|
.raw_size = sizeof(struct k_cycle_stats),
|
|
.query_size = sizeof(struct k_thread_runtime_stats),
|
|
.raw = z_thread_stats_raw,
|
|
.query = z_thread_stats_query,
|
|
.reset = z_thread_stats_reset,
|
|
.disable = z_thread_stats_disable,
|
|
.enable = z_thread_stats_enable,
|
|
};
|
|
#endif
|
|
|
|
static int init_thread_obj_core_list(void)
|
|
{
|
|
/* Initialize mem_slab object type */
|
|
|
|
#ifdef CONFIG_OBJ_CORE_THREAD
|
|
z_obj_type_init(&obj_type_thread, K_OBJ_TYPE_THREAD_ID,
|
|
offsetof(struct k_thread, obj_core));
|
|
#endif
|
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
|
|
k_obj_type_stats_init(&obj_type_thread, &thread_stats_desc);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_thread_obj_core_list, PRE_KERNEL_1,
|
|
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
#endif
|
|
|
|
#ifdef CONFIG_THREAD_MONITOR
|
|
/* This lock protects the linked list of active threads; i.e. the
|
|
* initial _kernel.threads pointer and the linked list made up of
|
|
* thread->next_thread (until NULL)
|
|
*/
|
|
static struct k_spinlock z_thread_monitor_lock;
|
|
#endif /* CONFIG_THREAD_MONITOR */
|
|
|
|
#define _FOREACH_STATIC_THREAD(thread_data) \
|
|
STRUCT_SECTION_FOREACH(_static_thread_data, thread_data)
|
|
|
|
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
|
|
{
|
|
#if defined(CONFIG_THREAD_MONITOR)
|
|
struct k_thread *thread;
|
|
k_spinlock_key_t key;
|
|
|
|
__ASSERT(user_cb != NULL, "user_cb can not be NULL");
|
|
|
|
/*
|
|
* Lock is needed to make sure that the _kernel.threads is not being
|
|
* modified by the user_cb either directly or indirectly.
|
|
* The indirect ways are through calling k_thread_create and
|
|
* k_thread_abort from user_cb.
|
|
*/
|
|
key = k_spin_lock(&z_thread_monitor_lock);
|
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach);
|
|
|
|
for (thread = _kernel.threads; thread; thread = thread->next_thread) {
|
|
user_cb(thread, user_data);
|
|
}
|
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach);
|
|
|
|
k_spin_unlock(&z_thread_monitor_lock, key);
|
|
#else
|
|
ARG_UNUSED(user_cb);
|
|
ARG_UNUSED(user_data);
|
|
#endif
|
|
}
|
|
|
|
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
|
|
{
|
|
#if defined(CONFIG_THREAD_MONITOR)
|
|
struct k_thread *thread;
|
|
k_spinlock_key_t key;
|
|
|
|
__ASSERT(user_cb != NULL, "user_cb can not be NULL");
|
|
|
|
key = k_spin_lock(&z_thread_monitor_lock);
|
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, foreach_unlocked);
|
|
|
|
for (thread = _kernel.threads; thread; thread = thread->next_thread) {
|
|
k_spin_unlock(&z_thread_monitor_lock, key);
|
|
user_cb(thread, user_data);
|
|
key = k_spin_lock(&z_thread_monitor_lock);
|
|
}
|
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, foreach_unlocked);
|
|
|
|
k_spin_unlock(&z_thread_monitor_lock, key);
|
|
#else
|
|
ARG_UNUSED(user_cb);
|
|
ARG_UNUSED(user_data);
|
|
#endif
|
|
}
|
|
|
|
bool k_is_in_isr(void)
|
|
{
|
|
return arch_is_in_isr();
|
|
}
|
|
EXPORT_SYMBOL(k_is_in_isr);
|
|
|
|
/*
|
|
* This function tags the current thread as essential to system operation.
|
|
* Exceptions raised by this thread will be treated as a fatal system error.
|
|
*/
|
|
void z_thread_essential_set(void)
|
|
{
|
|
_current->base.user_options |= K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This function tags the current thread as not essential to system operation.
|
|
* Exceptions raised by this thread may be recoverable.
|
|
* (This is the default tag for a thread.)
|
|
*/
|
|
void z_thread_essential_clear(void)
|
|
{
|
|
_current->base.user_options &= ~K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This routine indicates if the current thread is an essential system thread.
|
|
*
|
|
* Returns true if current thread is essential, false if it is not.
|
|
*/
|
|
bool z_is_thread_essential(void)
|
|
{
|
|
return (_current->base.user_options & K_ESSENTIAL) == K_ESSENTIAL;
|
|
}
|
|
|
|
#ifdef CONFIG_THREAD_CUSTOM_DATA
|
|
void z_impl_k_thread_custom_data_set(void *value)
|
|
{
|
|
_current->custom_data = value;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_custom_data_set(void *data)
|
|
{
|
|
z_impl_k_thread_custom_data_set(data);
|
|
}
|
|
#include <syscalls/k_thread_custom_data_set_mrsh.c>
|
|
#endif
|
|
|
|
void *z_impl_k_thread_custom_data_get(void)
|
|
{
|
|
return _current->custom_data;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void *z_vrfy_k_thread_custom_data_get(void)
|
|
{
|
|
return z_impl_k_thread_custom_data_get();
|
|
}
|
|
#include <syscalls/k_thread_custom_data_get_mrsh.c>
|
|
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_THREAD_CUSTOM_DATA */
|
|
|
|
#if defined(CONFIG_THREAD_MONITOR)
|
|
/*
|
|
* Remove a thread from the kernel's list of active threads.
|
|
*/
|
|
void z_thread_monitor_exit(struct k_thread *thread)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
|
|
|
|
if (thread == _kernel.threads) {
|
|
_kernel.threads = _kernel.threads->next_thread;
|
|
} else {
|
|
struct k_thread *prev_thread;
|
|
|
|
prev_thread = _kernel.threads;
|
|
while ((prev_thread != NULL) &&
|
|
(thread != prev_thread->next_thread)) {
|
|
prev_thread = prev_thread->next_thread;
|
|
}
|
|
if (prev_thread != NULL) {
|
|
prev_thread->next_thread = thread->next_thread;
|
|
}
|
|
}
|
|
|
|
k_spin_unlock(&z_thread_monitor_lock, key);
|
|
}
|
|
#endif
|
|
|
|
int z_impl_k_thread_name_set(struct k_thread *thread, const char *value)
|
|
{
|
|
#ifdef CONFIG_THREAD_NAME
|
|
if (thread == NULL) {
|
|
thread = _current;
|
|
}
|
|
|
|
strncpy(thread->name, value, CONFIG_THREAD_MAX_NAME_LEN - 1);
|
|
thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0);
|
|
|
|
return 0;
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
ARG_UNUSED(value);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS);
|
|
|
|
return -ENOSYS;
|
|
#endif /* CONFIG_THREAD_NAME */
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_thread_name_set(struct k_thread *thread, const char *str)
|
|
{
|
|
#ifdef CONFIG_THREAD_NAME
|
|
char name[CONFIG_THREAD_MAX_NAME_LEN];
|
|
|
|
if (thread != NULL) {
|
|
if (K_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* In theory we could copy directly into thread->name, but
|
|
* the current z_vrfy / z_impl split does not provide a
|
|
* means of doing so.
|
|
*/
|
|
if (k_usermode_string_copy(name, (char *)str, sizeof(name)) != 0) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
return z_impl_k_thread_name_set(thread, name);
|
|
#else
|
|
return -ENOSYS;
|
|
#endif /* CONFIG_THREAD_NAME */
|
|
}
|
|
#include <syscalls/k_thread_name_set_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
const char *k_thread_name_get(k_tid_t thread)
|
|
{
|
|
#ifdef CONFIG_THREAD_NAME
|
|
return (const char *)thread->name;
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
return NULL;
|
|
#endif /* CONFIG_THREAD_NAME */
|
|
}
|
|
|
|
int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
|
|
{
|
|
#ifdef CONFIG_THREAD_NAME
|
|
strncpy(buf, thread->name, size);
|
|
return 0;
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
ARG_UNUSED(buf);
|
|
ARG_UNUSED(size);
|
|
return -ENOSYS;
|
|
#endif /* CONFIG_THREAD_NAME */
|
|
}
|
|
|
|
static size_t copy_bytes(char *dest, size_t dest_size, const char *src, size_t src_size)
|
|
{
|
|
size_t bytes_to_copy;
|
|
|
|
bytes_to_copy = MIN(dest_size, src_size);
|
|
memcpy(dest, src, bytes_to_copy);
|
|
|
|
return bytes_to_copy;
|
|
}
|
|
|
|
#define Z_STATE_STR_DUMMY "dummy"
|
|
#define Z_STATE_STR_PENDING "pending"
|
|
#define Z_STATE_STR_PRESTART "prestart"
|
|
#define Z_STATE_STR_DEAD "dead"
|
|
#define Z_STATE_STR_SUSPENDED "suspended"
|
|
#define Z_STATE_STR_ABORTING "aborting"
|
|
#define Z_STATE_STR_SUSPENDING "suspending"
|
|
#define Z_STATE_STR_QUEUED "queued"
|
|
|
|
const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
|
|
{
|
|
size_t off = 0;
|
|
uint8_t bit;
|
|
uint8_t thread_state = thread_id->base.thread_state;
|
|
static const struct {
|
|
const char *str;
|
|
size_t len;
|
|
} state_string[] = {
|
|
{ Z_STATE_STR_DUMMY, sizeof(Z_STATE_STR_DUMMY) - 1},
|
|
{ Z_STATE_STR_PENDING, sizeof(Z_STATE_STR_PENDING) - 1},
|
|
{ Z_STATE_STR_PRESTART, sizeof(Z_STATE_STR_PRESTART) - 1},
|
|
{ Z_STATE_STR_DEAD, sizeof(Z_STATE_STR_DEAD) - 1},
|
|
{ Z_STATE_STR_SUSPENDED, sizeof(Z_STATE_STR_SUSPENDED) - 1},
|
|
{ Z_STATE_STR_ABORTING, sizeof(Z_STATE_STR_ABORTING) - 1},
|
|
{ Z_STATE_STR_SUSPENDING, sizeof(Z_STATE_STR_SUSPENDING) - 1},
|
|
{ Z_STATE_STR_QUEUED, sizeof(Z_STATE_STR_QUEUED) - 1},
|
|
};
|
|
|
|
if ((buf == NULL) || (buf_size == 0)) {
|
|
return "";
|
|
}
|
|
|
|
buf_size--; /* Reserve 1 byte for end-of-string character */
|
|
|
|
/*
|
|
* Loop through each bit in the thread_state. Stop once all have
|
|
* been processed. If more than one thread_state bit is set, then
|
|
* separate the descriptive strings with a '+'.
|
|
*/
|
|
|
|
|
|
for (unsigned int index = 0; thread_state != 0; index++) {
|
|
bit = BIT(index);
|
|
if ((thread_state & bit) == 0) {
|
|
continue;
|
|
}
|
|
|
|
off += copy_bytes(buf + off, buf_size - off,
|
|
state_string[index].str,
|
|
state_string[index].len);
|
|
|
|
thread_state &= ~bit;
|
|
|
|
if (thread_state != 0) {
|
|
off += copy_bytes(buf + off, buf_size - off, "+", 1);
|
|
}
|
|
}
|
|
|
|
buf[off] = '\0';
|
|
|
|
return (const char *)buf;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_thread_name_copy(k_tid_t thread,
|
|
char *buf, size_t size)
|
|
{
|
|
#ifdef CONFIG_THREAD_NAME
|
|
size_t len;
|
|
struct k_object *ko = k_object_find(thread);
|
|
|
|
/* Special case: we allow reading the names of initialized threads
|
|
* even if we don't have permission on them
|
|
*/
|
|
if (thread == NULL || ko->type != K_OBJ_THREAD ||
|
|
(ko->flags & K_OBJ_FLAG_INITIALIZED) == 0) {
|
|
return -EINVAL;
|
|
}
|
|
if (K_SYSCALL_MEMORY_WRITE(buf, size) != 0) {
|
|
return -EFAULT;
|
|
}
|
|
len = strlen(thread->name);
|
|
if (len + 1 > size) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
return k_usermode_to_copy((void *)buf, thread->name, len + 1);
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
ARG_UNUSED(buf);
|
|
ARG_UNUSED(size);
|
|
return -ENOSYS;
|
|
#endif /* CONFIG_THREAD_NAME */
|
|
}
|
|
#include <syscalls/k_thread_name_copy_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
#ifdef CONFIG_STACK_SENTINEL
|
|
/* Check that the stack sentinel is still present
|
|
*
|
|
* The stack sentinel feature writes a magic value to the lowest 4 bytes of
|
|
* the thread's stack when the thread is initialized. This value gets checked
|
|
* in a few places:
|
|
*
|
|
* 1) In k_yield() if the current thread is not swapped out
|
|
* 2) After servicing a non-nested interrupt
|
|
* 3) In z_swap(), check the sentinel in the outgoing thread
|
|
*
|
|
* Item 2 requires support in arch/ code.
|
|
*
|
|
* If the check fails, the thread will be terminated appropriately through
|
|
* the system fatal error handler.
|
|
*/
|
|
void z_check_stack_sentinel(void)
|
|
{
|
|
uint32_t *stack;
|
|
|
|
if ((_current->base.thread_state & _THREAD_DUMMY) != 0) {
|
|
return;
|
|
}
|
|
|
|
stack = (uint32_t *)_current->stack_info.start;
|
|
if (*stack != STACK_SENTINEL) {
|
|
/* Restore it so further checks don't trigger this same error */
|
|
*stack = STACK_SENTINEL;
|
|
z_except_reason(K_ERR_STACK_CHK_FAIL);
|
|
}
|
|
}
|
|
#endif /* CONFIG_STACK_SENTINEL */
|
|
|
|
void z_impl_k_thread_start(struct k_thread *thread)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, start, thread);
|
|
|
|
z_sched_start(thread);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline void z_vrfy_k_thread_start(struct k_thread *thread)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
return z_impl_k_thread_start(thread);
|
|
}
|
|
#include <syscalls/k_thread_start_mrsh.c>
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
static void schedule_new_thread(struct k_thread *thread, k_timeout_t delay)
|
|
{
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
if (K_TIMEOUT_EQ(delay, K_NO_WAIT)) {
|
|
k_thread_start(thread);
|
|
} else {
|
|
z_add_thread_timeout(thread, delay);
|
|
}
|
|
#else
|
|
ARG_UNUSED(delay);
|
|
k_thread_start(thread);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_STACK_POINTER_RANDOM
|
|
int z_stack_adjust_initialized;
|
|
|
|
static size_t random_offset(size_t stack_size)
|
|
{
|
|
size_t random_val;
|
|
|
|
if (!z_stack_adjust_initialized) {
|
|
z_early_rand_get((uint8_t *)&random_val, sizeof(random_val));
|
|
} else {
|
|
sys_rand_get((uint8_t *)&random_val, sizeof(random_val));
|
|
}
|
|
|
|
/* Don't need to worry about alignment of the size here,
|
|
* arch_new_thread() is required to do it.
|
|
*
|
|
* FIXME: Not the best way to get a random number in a range.
|
|
* See #6493
|
|
*/
|
|
const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;
|
|
|
|
if (unlikely(fuzz * 2 > stack_size)) {
|
|
return 0;
|
|
}
|
|
|
|
return fuzz;
|
|
}
|
|
#if defined(CONFIG_STACK_GROWS_UP)
|
|
/* This is so rare not bothering for now */
|
|
#error "Stack pointer randomization not implemented for upward growing stacks"
|
|
#endif /* CONFIG_STACK_GROWS_UP */
|
|
#endif /* CONFIG_STACK_POINTER_RANDOM */
|
|
|
|
static char *setup_thread_stack(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack, size_t stack_size)
|
|
{
|
|
size_t stack_obj_size, stack_buf_size;
|
|
char *stack_ptr, *stack_buf_start;
|
|
size_t delta = 0;
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
if (z_stack_is_user_capable(stack)) {
|
|
stack_obj_size = Z_THREAD_STACK_SIZE_ADJUST(stack_size);
|
|
stack_buf_start = Z_THREAD_STACK_BUFFER(stack);
|
|
stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED;
|
|
} else
|
|
#endif
|
|
{
|
|
/* Object cannot host a user mode thread */
|
|
stack_obj_size = Z_KERNEL_STACK_SIZE_ADJUST(stack_size);
|
|
stack_buf_start = Z_KERNEL_STACK_BUFFER(stack);
|
|
stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED;
|
|
|
|
/* Zephyr treats stack overflow as an app bug. But
|
|
* this particular overflow can be seen by static
|
|
* analysis so needs to be handled somehow.
|
|
*/
|
|
if (K_KERNEL_STACK_RESERVED > stack_obj_size) {
|
|
k_panic();
|
|
}
|
|
|
|
}
|
|
|
|
/* Initial stack pointer at the high end of the stack object, may
|
|
* be reduced later in this function by TLS or random offset
|
|
*/
|
|
stack_ptr = (char *)stack + stack_obj_size;
|
|
|
|
LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p "
|
|
" buf_size %zu stack_ptr=%p",
|
|
stack, new_thread, stack_obj_size, (void *)stack_buf_start,
|
|
stack_buf_size, (void *)stack_ptr);
|
|
|
|
#ifdef CONFIG_INIT_STACKS
|
|
memset(stack_buf_start, 0xaa, stack_buf_size);
|
|
#endif
|
|
#ifdef CONFIG_STACK_SENTINEL
|
|
/* Put the stack sentinel at the lowest 4 bytes of the stack area.
|
|
* We periodically check that it's still present and kill the thread
|
|
* if it isn't.
|
|
*/
|
|
*((uint32_t *)stack_buf_start) = STACK_SENTINEL;
|
|
#endif /* CONFIG_STACK_SENTINEL */
|
|
#ifdef CONFIG_THREAD_LOCAL_STORAGE
|
|
/* TLS is always last within the stack buffer */
|
|
delta += arch_tls_stack_setup(new_thread, stack_ptr);
|
|
#endif /* CONFIG_THREAD_LOCAL_STORAGE */
|
|
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
|
|
size_t tls_size = sizeof(struct _thread_userspace_local_data);
|
|
|
|
/* reserve space on highest memory of stack buffer for local data */
|
|
delta += tls_size;
|
|
new_thread->userspace_local_data =
|
|
(struct _thread_userspace_local_data *)(stack_ptr - delta);
|
|
#endif
|
|
#if CONFIG_STACK_POINTER_RANDOM
|
|
delta += random_offset(stack_buf_size);
|
|
#endif
|
|
delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN);
|
|
#ifdef CONFIG_THREAD_STACK_INFO
|
|
/* Initial values. Arches which implement MPU guards that "borrow"
|
|
* memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED)
|
|
* will need to appropriately update this.
|
|
*
|
|
* The bounds tracked here correspond to the area of the stack object
|
|
* that the thread can access, which includes TLS.
|
|
*/
|
|
new_thread->stack_info.start = (uintptr_t)stack_buf_start;
|
|
new_thread->stack_info.size = stack_buf_size;
|
|
new_thread->stack_info.delta = delta;
|
|
#endif
|
|
stack_ptr -= delta;
|
|
|
|
return stack_ptr;
|
|
}
|
|
|
|
/*
|
|
* The provided stack_size value is presumed to be either the result of
|
|
* K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance
|
|
* of K_THREAD_STACK_DEFINE() which defined 'stack'.
|
|
*/
|
|
char *z_setup_new_thread(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack, size_t stack_size,
|
|
k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3,
|
|
int prio, uint32_t options, const char *name)
|
|
{
|
|
char *stack_ptr;
|
|
|
|
Z_ASSERT_VALID_PRIO(prio, entry);
|
|
|
|
#ifdef CONFIG_OBJ_CORE_THREAD
|
|
k_obj_core_init_and_link(K_OBJ_CORE(new_thread), &obj_type_thread);
|
|
#ifdef CONFIG_OBJ_CORE_STATS_THREAD
|
|
k_obj_core_stats_register(K_OBJ_CORE(new_thread),
|
|
&new_thread->base.usage,
|
|
sizeof(new_thread->base.usage));
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
__ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack),
|
|
"user thread %p with kernel-only stack %p",
|
|
new_thread, stack);
|
|
k_object_init(new_thread);
|
|
k_object_init(stack);
|
|
new_thread->stack_obj = stack;
|
|
new_thread->syscall_frame = NULL;
|
|
|
|
/* Any given thread has access to itself */
|
|
k_object_access_grant(new_thread, new_thread);
|
|
#endif
|
|
z_waitq_init(&new_thread->join_queue);
|
|
|
|
/* Initialize various struct k_thread members */
|
|
z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options);
|
|
stack_ptr = setup_thread_stack(new_thread, stack, stack_size);
|
|
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
/* Check that the thread object is safe, but that the stack is
|
|
* still cached!
|
|
*/
|
|
__ASSERT_NO_MSG(arch_mem_coherent(new_thread));
|
|
|
|
/* When dynamic thread stack is available, the stack may come from
|
|
* uncached area.
|
|
*/
|
|
#ifndef CONFIG_DYNAMIC_THREAD
|
|
__ASSERT_NO_MSG(!arch_mem_coherent(stack));
|
|
#endif /* CONFIG_DYNAMIC_THREAD */
|
|
|
|
#endif
|
|
|
|
arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3);
|
|
|
|
/* static threads overwrite it afterwards with real value */
|
|
new_thread->init_data = NULL;
|
|
|
|
#ifdef CONFIG_USE_SWITCH
|
|
/* switch_handle must be non-null except when inside z_swap()
|
|
* for synchronization reasons. Historically some notional
|
|
* USE_SWITCH architectures have actually ignored the field
|
|
*/
|
|
__ASSERT(new_thread->switch_handle != NULL,
|
|
"arch layer failed to initialize switch_handle");
|
|
#endif
|
|
#ifdef CONFIG_THREAD_CUSTOM_DATA
|
|
/* Initialize custom data field (value is opaque to kernel) */
|
|
new_thread->custom_data = NULL;
|
|
#endif
|
|
#ifdef CONFIG_EVENTS
|
|
new_thread->no_wake_on_timeout = false;
|
|
#endif
|
|
#ifdef CONFIG_THREAD_MONITOR
|
|
new_thread->entry.pEntry = entry;
|
|
new_thread->entry.parameter1 = p1;
|
|
new_thread->entry.parameter2 = p2;
|
|
new_thread->entry.parameter3 = p3;
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
|
|
|
|
new_thread->next_thread = _kernel.threads;
|
|
_kernel.threads = new_thread;
|
|
k_spin_unlock(&z_thread_monitor_lock, key);
|
|
#endif
|
|
#ifdef CONFIG_THREAD_NAME
|
|
if (name != NULL) {
|
|
strncpy(new_thread->name, name,
|
|
CONFIG_THREAD_MAX_NAME_LEN - 1);
|
|
/* Ensure NULL termination, truncate if longer */
|
|
new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
|
|
} else {
|
|
new_thread->name[0] = '\0';
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SCHED_CPU_MASK
|
|
if (IS_ENABLED(CONFIG_SCHED_CPU_MASK_PIN_ONLY)) {
|
|
new_thread->base.cpu_mask = 1; /* must specify only one cpu */
|
|
} else {
|
|
new_thread->base.cpu_mask = -1; /* allow all cpus */
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
|
|
/* _current may be null if the dummy thread is not used */
|
|
if (!_current) {
|
|
new_thread->resource_pool = NULL;
|
|
return stack_ptr;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_USERSPACE
|
|
z_mem_domain_init_thread(new_thread);
|
|
|
|
if ((options & K_INHERIT_PERMS) != 0U) {
|
|
k_thread_perms_inherit(_current, new_thread);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
new_thread->base.prio_deadline = 0;
|
|
#endif
|
|
new_thread->resource_pool = _current->resource_pool;
|
|
|
|
#ifdef CONFIG_SMP
|
|
z_waitq_init(&new_thread->halt_queue);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_THREAD_USAGE
|
|
new_thread->base.usage = (struct k_cycle_stats) {};
|
|
new_thread->base.usage.track_usage =
|
|
CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
|
|
#endif
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread);
|
|
|
|
return stack_ptr;
|
|
}
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack,
|
|
size_t stack_size, k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3,
|
|
int prio, uint32_t options, k_timeout_t delay)
|
|
{
|
|
__ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs");
|
|
|
|
z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
|
|
prio, options, NULL);
|
|
|
|
if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
|
|
schedule_new_thread(new_thread, delay);
|
|
}
|
|
|
|
return new_thread;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
bool z_stack_is_user_capable(k_thread_stack_t *stack)
|
|
{
|
|
return k_object_find(stack) != NULL;
|
|
}
|
|
|
|
k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack,
|
|
size_t stack_size, k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3,
|
|
int prio, uint32_t options, k_timeout_t delay)
|
|
{
|
|
size_t total_size, stack_obj_size;
|
|
struct k_object *stack_object;
|
|
|
|
/* The thread and stack objects *must* be in an uninitialized state */
|
|
K_OOPS(K_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
|
|
|
|
/* No need to check z_stack_is_user_capable(), it won't be in the
|
|
* object table if it isn't
|
|
*/
|
|
stack_object = k_object_find(stack);
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(k_object_validation_check(stack_object, stack,
|
|
K_OBJ_THREAD_STACK_ELEMENT,
|
|
_OBJ_INIT_FALSE) == 0,
|
|
"bad stack object"));
|
|
|
|
/* Verify that the stack size passed in is OK by computing the total
|
|
* size and comparing it with the size value in the object metadata
|
|
*/
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED,
|
|
stack_size, &total_size),
|
|
"stack size overflow (%zu+%zu)",
|
|
stack_size,
|
|
K_THREAD_STACK_RESERVED));
|
|
|
|
/* Testing less-than-or-equal since additional room may have been
|
|
* allocated for alignment constraints
|
|
*/
|
|
#ifdef CONFIG_GEN_PRIV_STACKS
|
|
stack_obj_size = stack_object->data.stack_data->size;
|
|
#else
|
|
stack_obj_size = stack_object->data.stack_size;
|
|
#endif
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size,
|
|
"stack size %zu is too big, max is %zu",
|
|
total_size, stack_obj_size));
|
|
|
|
/* User threads may only create other user threads and they can't
|
|
* be marked as essential
|
|
*/
|
|
K_OOPS(K_SYSCALL_VERIFY(options & K_USER));
|
|
K_OOPS(K_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));
|
|
|
|
/* Check validity of prio argument; must be the same or worse priority
|
|
* than the caller
|
|
*/
|
|
K_OOPS(K_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
|
|
K_OOPS(K_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
|
|
_current->base.prio)));
|
|
|
|
z_setup_new_thread(new_thread, stack, stack_size,
|
|
entry, p1, p2, p3, prio, options, NULL);
|
|
|
|
if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
|
|
schedule_new_thread(new_thread, delay);
|
|
}
|
|
|
|
return new_thread;
|
|
}
|
|
#include <syscalls/k_thread_create_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_MULTITHREADING */
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
#ifdef CONFIG_USERSPACE
|
|
|
|
static void grant_static_access(void)
|
|
{
|
|
STRUCT_SECTION_FOREACH(k_object_assignment, pos) {
|
|
for (int i = 0; pos->objects[i] != NULL; i++) {
|
|
k_object_access_grant(pos->objects[i],
|
|
pos->thread);
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
void z_init_static_threads(void)
|
|
{
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
z_setup_new_thread(
|
|
thread_data->init_thread,
|
|
thread_data->init_stack,
|
|
thread_data->init_stack_size,
|
|
thread_data->init_entry,
|
|
thread_data->init_p1,
|
|
thread_data->init_p2,
|
|
thread_data->init_p3,
|
|
thread_data->init_prio,
|
|
thread_data->init_options,
|
|
thread_data->init_name);
|
|
|
|
thread_data->init_thread->init_data = thread_data;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
grant_static_access();
|
|
#endif
|
|
|
|
/*
|
|
* Non-legacy static threads may be started immediately or
|
|
* after a previously specified delay. Even though the
|
|
* scheduler is locked, ticks can still be delivered and
|
|
* processed. Take a sched lock to prevent them from running
|
|
* until they are all started.
|
|
*
|
|
* Note that static threads defined using the legacy API have a
|
|
* delay of K_FOREVER.
|
|
*/
|
|
k_sched_lock();
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data);
|
|
|
|
if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) {
|
|
schedule_new_thread(thread_data->init_thread,
|
|
init_delay);
|
|
}
|
|
}
|
|
k_sched_unlock();
|
|
}
|
|
#endif
|
|
|
|
void z_init_thread_base(struct _thread_base *thread_base, int priority,
|
|
uint32_t initial_state, unsigned int options)
|
|
{
|
|
/* k_q_node is initialized upon first insertion in a list */
|
|
thread_base->pended_on = NULL;
|
|
thread_base->user_options = (uint8_t)options;
|
|
thread_base->thread_state = (uint8_t)initial_state;
|
|
|
|
thread_base->prio = priority;
|
|
|
|
thread_base->sched_locked = 0U;
|
|
|
|
#ifdef CONFIG_SMP
|
|
thread_base->is_idle = 0;
|
|
#endif
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
thread_base->slice_ticks = 0;
|
|
thread_base->slice_expired = NULL;
|
|
#endif
|
|
|
|
/* swap_data does not need to be initialized */
|
|
|
|
z_init_thread_timeout(thread_base);
|
|
}
|
|
|
|
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter);
|
|
|
|
_current->base.user_options |= K_USER;
|
|
z_thread_essential_clear();
|
|
#ifdef CONFIG_THREAD_MONITOR
|
|
_current->entry.pEntry = entry;
|
|
_current->entry.parameter1 = p1;
|
|
_current->entry.parameter2 = p2;
|
|
_current->entry.parameter3 = p3;
|
|
#endif
|
|
#ifdef CONFIG_USERSPACE
|
|
__ASSERT(z_stack_is_user_capable(_current->stack_obj),
|
|
"dropping to user mode with kernel-only stack object");
|
|
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
|
|
memset(_current->userspace_local_data, 0,
|
|
sizeof(struct _thread_userspace_local_data));
|
|
#endif
|
|
#ifdef CONFIG_THREAD_LOCAL_STORAGE
|
|
arch_tls_stack_setup(_current,
|
|
(char *)(_current->stack_info.start +
|
|
_current->stack_info.size));
|
|
#endif
|
|
arch_user_mode_enter(entry, p1, p2, p3);
|
|
#else
|
|
/* XXX In this case we do not reset the stack */
|
|
z_thread_entry(entry, p1, p2, p3);
|
|
#endif
|
|
}
|
|
|
|
/* These spinlock assertion predicates are defined here because having
|
|
* them in spinlock.h is a giant header ordering headache.
|
|
*/
|
|
#ifdef CONFIG_SPIN_VALIDATE
|
|
bool z_spin_lock_valid(struct k_spinlock *l)
|
|
{
|
|
uintptr_t thread_cpu = l->thread_cpu;
|
|
|
|
if (thread_cpu != 0U) {
|
|
if ((thread_cpu & 3U) == _current_cpu->id) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool z_spin_unlock_valid(struct k_spinlock *l)
|
|
{
|
|
if (l->thread_cpu != (_current_cpu->id | (uintptr_t)_current)) {
|
|
return false;
|
|
}
|
|
l->thread_cpu = 0;
|
|
return true;
|
|
}
|
|
|
|
void z_spin_lock_set_owner(struct k_spinlock *l)
|
|
{
|
|
l->thread_cpu = _current_cpu->id | (uintptr_t)_current;
|
|
}
|
|
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
bool z_spin_lock_mem_coherent(struct k_spinlock *l)
|
|
{
|
|
return arch_mem_coherent((void *)l);
|
|
}
|
|
#endif /* CONFIG_KERNEL_COHERENCE */
|
|
|
|
#endif /* CONFIG_SPIN_VALIDATE */
|
|
|
|
int z_impl_k_float_disable(struct k_thread *thread)
|
|
{
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
|
|
return arch_float_disable(thread);
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
return -ENOTSUP;
|
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
|
|
}
|
|
|
|
int z_impl_k_float_enable(struct k_thread *thread, unsigned int options)
|
|
{
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING)
|
|
return arch_float_enable(thread, options);
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
ARG_UNUSED(options);
|
|
return -ENOTSUP;
|
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_float_disable(struct k_thread *thread)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
|
|
return z_impl_k_float_disable(thread);
|
|
}
|
|
#include <syscalls/k_float_disable_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
#ifdef CONFIG_IRQ_OFFLOAD
|
|
/* Make offload_sem visible outside under testing, in order to release
|
|
* it outside when error happened.
|
|
*/
|
|
K_SEM_DEFINE(offload_sem, 1, 1);
|
|
|
|
void irq_offload(irq_offload_routine_t routine, const void *parameter)
|
|
{
|
|
#ifdef CONFIG_IRQ_OFFLOAD_NESTED
|
|
arch_irq_offload(routine, parameter);
|
|
#else
|
|
k_sem_take(&offload_sem, K_FOREVER);
|
|
arch_irq_offload(routine, parameter);
|
|
k_sem_give(&offload_sem);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
|
|
#ifdef CONFIG_STACK_GROWS_UP
|
|
#error "Unsupported configuration for stack analysis"
|
|
#endif
|
|
|
|
int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr)
|
|
{
|
|
size_t unused = 0;
|
|
const uint8_t *checked_stack = stack_start;
|
|
/* Take the address of any local variable as a shallow bound for the
|
|
* stack pointer. Addresses above it are guaranteed to be
|
|
* accessible.
|
|
*/
|
|
const uint8_t *stack_pointer = (const uint8_t *)&stack_start;
|
|
|
|
/* If we are currently running on the stack being analyzed, some
|
|
* memory management hardware will generate an exception if we
|
|
* read unused stack memory.
|
|
*
|
|
* This never happens when invoked from user mode, as user mode
|
|
* will always run this function on the privilege elevation stack.
|
|
*/
|
|
if ((stack_pointer > stack_start) && (stack_pointer <= (stack_start + size)) &&
|
|
IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
|
|
/* TODO: We could add an arch_ API call to temporarily
|
|
* disable the stack checking in the CPU, but this would
|
|
* need to be properly managed wrt context switches/interrupts
|
|
*/
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_STACK_SENTINEL)) {
|
|
/* First 4 bytes of the stack buffer reserved for the
|
|
* sentinel value, it won't be 0xAAAAAAAA for thread
|
|
* stacks.
|
|
*
|
|
* FIXME: thread->stack_info.start ought to reflect
|
|
* this!
|
|
*/
|
|
checked_stack += 4;
|
|
size -= 4;
|
|
}
|
|
|
|
for (size_t i = 0; i < size; i++) {
|
|
if ((checked_stack[i]) == 0xaaU) {
|
|
unused++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
*unused_ptr = unused;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int z_impl_k_thread_stack_space_get(const struct k_thread *thread,
|
|
size_t *unused_ptr)
|
|
{
|
|
return z_stack_space_get((const uint8_t *)thread->stack_info.start,
|
|
thread->stack_info.size, unused_ptr);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread,
|
|
size_t *unused_ptr)
|
|
{
|
|
size_t unused;
|
|
int ret;
|
|
|
|
ret = K_SYSCALL_OBJ(thread, K_OBJ_THREAD);
|
|
CHECKIF(ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = z_impl_k_thread_stack_space_get(thread, &unused);
|
|
CHECKIF(ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = k_usermode_to_copy(unused_ptr, &unused, sizeof(size_t));
|
|
CHECKIF(ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#include <syscalls/k_thread_stack_space_get_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks(
|
|
const struct k_thread *t)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(t, K_OBJ_THREAD));
|
|
return z_impl_k_thread_timeout_remaining_ticks(t);
|
|
}
|
|
#include <syscalls/k_thread_timeout_remaining_ticks_mrsh.c>
|
|
|
|
static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks(
|
|
const struct k_thread *t)
|
|
{
|
|
K_OOPS(K_SYSCALL_OBJ(t, K_OBJ_THREAD));
|
|
return z_impl_k_thread_timeout_expires_ticks(t);
|
|
}
|
|
#include <syscalls/k_thread_timeout_expires_ticks_mrsh.c>
|
|
#endif
|
|
|
|
#ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
|
|
void z_thread_mark_switched_in(void)
|
|
{
|
|
#if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
|
|
z_sched_usage_start(_current);
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACING
|
|
SYS_PORT_TRACING_FUNC(k_thread, switched_in);
|
|
#endif
|
|
}
|
|
|
|
void z_thread_mark_switched_out(void)
|
|
{
|
|
#if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
|
|
z_sched_usage_stop();
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRACING
|
|
#ifdef CONFIG_THREAD_LOCAL_STORAGE
|
|
/* Dummy thread won't have TLS set up to run arbitrary code */
|
|
if (!_current_cpu->current ||
|
|
(_current_cpu->current->base.thread_state & _THREAD_DUMMY) != 0)
|
|
return;
|
|
#endif
|
|
SYS_PORT_TRACING_FUNC(k_thread, switched_out);
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
|
|
|
|
int k_thread_runtime_stats_get(k_tid_t thread,
|
|
k_thread_runtime_stats_t *stats)
|
|
{
|
|
if ((thread == NULL) || (stats == NULL)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_THREAD_USAGE
|
|
z_sched_thread_usage(thread, stats);
|
|
#else
|
|
*stats = (k_thread_runtime_stats_t) {};
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
|
|
{
|
|
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
|
|
k_thread_runtime_stats_t tmp_stats;
|
|
#endif
|
|
|
|
if (stats == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
*stats = (k_thread_runtime_stats_t) {};
|
|
|
|
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
|
|
/* Retrieve the usage stats for each core and amalgamate them. */
|
|
|
|
unsigned int num_cpus = arch_num_cpus();
|
|
|
|
for (uint8_t i = 0; i < num_cpus; i++) {
|
|
z_sched_cpu_usage(i, &tmp_stats);
|
|
|
|
stats->execution_cycles += tmp_stats.execution_cycles;
|
|
stats->total_cycles += tmp_stats.total_cycles;
|
|
#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
|
|
stats->current_cycles += tmp_stats.current_cycles;
|
|
stats->peak_cycles += tmp_stats.peak_cycles;
|
|
stats->average_cycles += tmp_stats.average_cycles;
|
|
#endif
|
|
stats->idle_cycles += tmp_stats.idle_cycles;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|