zephyr/drivers/interrupt_controller/intc_ite_it8xxx2_v2.c
Ruibin Chang b9a7340ded ITE drivers/interrupt_controller: add intc_ite_it8xxx2_v2 driver
This driver is made for it82xx2 series.

Signed-off-by: Ruibin Chang <Ruibin.Chang@ite.com.tw>
2023-04-19 03:48:38 -04:00

243 lines
5.6 KiB
C

/*
* Copyright (c) 2023 ITE Corporation. All Rights Reserved
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/init.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/printk.h>
#include <zephyr/sw_isr_table.h>
#include "intc_ite_it8xxx2.h"
LOG_MODULE_REGISTER(intc_it8xxx2_v2, LOG_LEVEL_DBG);
#define IT8XXX2_INTC_BASE DT_REG_ADDR(DT_NODELABEL(intc))
#define IT8XXX2_INTC_BASE_SHIFT(g) (IT8XXX2_INTC_BASE + ((g) << 2))
/* Interrupt status register */
#define IT8XXX2_INTC_ISR(g) ECREG(IT8XXX2_INTC_BASE_SHIFT(g) + \
((g) < 4 ? 0x0 : 0x4))
/* Interrupt enable register */
#define IT8XXX2_INTC_IER(g) ECREG(IT8XXX2_INTC_BASE_SHIFT(g) + \
((g) < 4 ? 0x1 : 0x5))
/* Interrupt edge/level triggered mode register */
#define IT8XXX2_INTC_IELMR(g) ECREG(IT8XXX2_INTC_BASE_SHIFT(g) + \
((g) < 4 ? 0x2 : 0x6))
/* Interrupt polarity register */
#define IT8XXX2_INTC_IPOLR(g) ECREG(IT8XXX2_INTC_BASE_SHIFT(g) + \
((g) < 4 ? 0x3 : 0x7))
#define IT8XXX2_INTC_GROUP_CNT 24
#define MAX_REGISR_IRQ_NUM 8
#define IVECT_OFFSET_WITH_IRQ 0x10
/* Interrupt number of INTC module */
static uint8_t intc_irq;
static uint8_t ier_setting[IT8XXX2_INTC_GROUP_CNT];
void ite_intc_save_and_disable_interrupts(void)
{
/* Disable global interrupt for critical section */
unsigned int key = irq_lock();
/* Save and disable interrupts */
for (int i = 0; i < IT8XXX2_INTC_GROUP_CNT; i++) {
ier_setting[i] = IT8XXX2_INTC_IER(i);
IT8XXX2_INTC_IER(i) = 0;
}
/*
* This load operation will guarantee the above modification of
* SOC's register can be seen by any following instructions.
* Note: Barrier instruction can not synchronize chip register,
* so we introduce workaround here.
*/
IT8XXX2_INTC_IER(IT8XXX2_INTC_GROUP_CNT - 1);
irq_unlock(key);
}
void ite_intc_restore_interrupts(void)
{
/*
* Ensure the highest priority interrupt will be the first fired
* interrupt when soc is ready to go.
*/
unsigned int key = irq_lock();
/* Restore interrupt state */
for (int i = 0; i < IT8XXX2_INTC_GROUP_CNT; i++) {
IT8XXX2_INTC_IER(i) = ier_setting[i];
}
irq_unlock(key);
}
void ite_intc_isr_clear(unsigned int irq)
{
uint32_t group, index;
if (irq > CONFIG_NUM_IRQS) {
return;
}
group = irq / MAX_REGISR_IRQ_NUM;
index = irq % MAX_REGISR_IRQ_NUM;
IT8XXX2_INTC_ISR(group) = BIT(index);
}
void __soc_ram_code ite_intc_irq_enable(unsigned int irq)
{
uint32_t group, index;
if (irq > CONFIG_NUM_IRQS) {
return;
}
group = irq / MAX_REGISR_IRQ_NUM;
index = irq % MAX_REGISR_IRQ_NUM;
/* Critical section due to run a bit-wise OR operation */
unsigned int key = irq_lock();
IT8XXX2_INTC_IER(group) |= BIT(index);
irq_unlock(key);
}
void __soc_ram_code ite_intc_irq_disable(unsigned int irq)
{
uint32_t group, index;
if (irq > CONFIG_NUM_IRQS) {
return;
}
group = irq / MAX_REGISR_IRQ_NUM;
index = irq % MAX_REGISR_IRQ_NUM;
/* Critical section due to run a bit-wise NAND operation */
unsigned int key = irq_lock();
IT8XXX2_INTC_IER(group) &= ~BIT(index);
/*
* This load operation will guarantee the above modification of
* SOC's register can be seen by any following instructions.
*/
IT8XXX2_INTC_IER(group);
irq_unlock(key);
}
void ite_intc_irq_polarity_set(unsigned int irq, unsigned int flags)
{
uint32_t group, index;
if (irq > CONFIG_NUM_IRQS) {
return;
}
if ((flags & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH) {
return;
}
group = irq / MAX_REGISR_IRQ_NUM;
index = irq % MAX_REGISR_IRQ_NUM;
if ((flags & IRQ_TYPE_LEVEL_HIGH) || (flags & IRQ_TYPE_EDGE_RISING)) {
IT8XXX2_INTC_IPOLR(group) &= ~BIT(index);
} else {
IT8XXX2_INTC_IPOLR(group) |= BIT(index);
}
if ((flags & IRQ_TYPE_LEVEL_LOW) || (flags & IRQ_TYPE_LEVEL_HIGH)) {
IT8XXX2_INTC_IELMR(group) &= ~BIT(index);
} else {
IT8XXX2_INTC_IELMR(group) |= BIT(index);
}
}
int __soc_ram_code ite_intc_irq_is_enable(unsigned int irq)
{
uint32_t group, index;
if (irq > CONFIG_NUM_IRQS) {
return 0;
}
group = irq / MAX_REGISR_IRQ_NUM;
index = irq % MAX_REGISR_IRQ_NUM;
return IS_MASK_SET(IT8XXX2_INTC_IER(group), BIT(index));
}
uint8_t __soc_ram_code ite_intc_get_irq_num(void)
{
return intc_irq;
}
bool __soc_ram_code ite_intc_no_irq(void)
{
return (IVECT == IVECT_OFFSET_WITH_IRQ);
}
uint8_t __soc_ram_code get_irq(void *arg)
{
ARG_UNUSED(arg);
/* Wait until two equal interrupt values are read */
do {
/* Read interrupt number from interrupt vector register */
intc_irq = IVECT;
/*
* WORKAROUND: when the interrupt vector register (IVECT)
* isn't latched in a load operation, we read it again to make
* sure the value we got is the correct value.
*/
} while (intc_irq != IVECT);
/* Determine interrupt number */
intc_irq -= IVECT_OFFSET_WITH_IRQ;
/*
* Look for pending interrupt if there's interrupt number 0 from
* the AIVECT register.
*/
if (intc_irq == 0) {
uint8_t int_pending;
for (int i = (IT8XXX2_INTC_GROUP_CNT - 1); i >= 0; i--) {
int_pending =
(IT8XXX2_INTC_ISR(i) & IT8XXX2_INTC_IER(i));
if (int_pending != 0) {
intc_irq = (MAX_REGISR_IRQ_NUM * i) +
find_msb_set(int_pending) - 1;
LOG_DBG("Pending interrupt found: %d",
intc_irq);
LOG_DBG("CPU mepc: 0x%lx", csr_read(mepc));
break;
}
}
}
/* Clear interrupt status */
ite_intc_isr_clear(intc_irq);
/* Return interrupt number */
return intc_irq;
}
void soc_interrupt_init(void)
{
/* Ensure interrupts of soc are disabled at default */
for (int i = 0; i < IT8XXX2_INTC_GROUP_CNT; i++) {
IT8XXX2_INTC_IER(i) = 0;
}
/* Enable M-mode external interrupt */
csr_set(mie, MIP_MEIP);
}