b10428163a
Currently there is no way to distinguish between a caller explicitly asking for a semaphore with a limit that happens to be `UINT_MAX` and a semaphore that just has a limit "as large as possible". Add `K_SEM_MAX_LIMIT`, currently defined to `UINT_MAX`, and akin to `K_FOREVER` versus just passing some very large wait time. In addition, the `k_sem_*` APIs were type-confused, where the internal data structure was `uint32_t`, but the APIs took and returned `unsigned int`. This changes the underlying data structure to also use `unsigned int`, as changing the APIs would be a (potentially) breaking change. These changes are backwards-compatible, but it is strongly suggested to take a quick scan for `k_sem_init` and `K_SEM_DEFINE` calls with `UINT_MAX` (or `UINT32_MAX`) and replace them with `K_SEM_MAX_LIMIT` where appropriate. Signed-off-by: James Harris <james.harris@intel.com>
1046 lines
27 KiB
C
1046 lines
27 KiB
C
/*
|
|
* Copyright (c) 2018 Savoir-Faire Linux.
|
|
* Copyright (c) 2020 Peter Bigot Consulting, LLC
|
|
*
|
|
* This driver is heavily inspired from the spi_flash_w25qxxdv.c SPI NOR driver.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT jedec_spi_nor
|
|
|
|
#include <errno.h>
|
|
#include <drivers/flash.h>
|
|
#include <drivers/spi.h>
|
|
#include <init.h>
|
|
#include <string.h>
|
|
#include <logging/log.h>
|
|
|
|
#include "spi_nor.h"
|
|
#include "jesd216.h"
|
|
#include "flash_priv.h"
|
|
|
|
LOG_MODULE_REGISTER(spi_nor, CONFIG_FLASH_LOG_LEVEL);
|
|
|
|
/* Device Power Management Notes
|
|
*
|
|
* These flash devices have several modes during operation:
|
|
* * When CSn is asserted (during a SPI operation) the device is
|
|
* active.
|
|
* * When CSn is deasserted the device enters a standby mode.
|
|
* * Some devices support a Deep Power-Down mode which reduces current
|
|
* to as little as 0.1% of standby.
|
|
*
|
|
* The power reduction from DPD is sufficent to warrant allowing its
|
|
* use even in cases where Zephyr's device power management is not
|
|
* available. This is selected through the SPI_NOR_IDLE_IN_DPD
|
|
* Kconfig option.
|
|
*
|
|
* When mapped to the Zephyr Device Power Management states:
|
|
* * DEVICE_PM_ACTIVE_STATE covers both active and standby modes;
|
|
* * DEVICE_PM_LOW_POWER_STATE, DEVICE_PM_SUSPEND_STATE, and
|
|
* DEVICE_PM_OFF_STATE all correspond to deep-power-down mode.
|
|
*/
|
|
|
|
#define SPI_NOR_MAX_ADDR_WIDTH 4
|
|
|
|
#ifndef NSEC_PER_MSEC
|
|
#define NSEC_PER_MSEC (NSEC_PER_USEC * USEC_PER_MSEC)
|
|
#endif
|
|
|
|
#if DT_INST_NODE_HAS_PROP(0, t_enter_dpd)
|
|
#define T_DP_MS ceiling_fraction(DT_INST_PROP(0, t_enter_dpd), NSEC_PER_MSEC)
|
|
#else /* T_ENTER_DPD */
|
|
#define T_DP_MS 0
|
|
#endif /* T_ENTER_DPD */
|
|
#if DT_INST_NODE_HAS_PROP(0, t_exit_dpd)
|
|
#define T_RES1_MS ceiling_fraction(DT_INST_PROP(0, t_exit_dpd), NSEC_PER_MSEC)
|
|
#endif /* T_EXIT_DPD */
|
|
#if DT_INST_NODE_HAS_PROP(0, dpd_wakeup_sequence)
|
|
#define T_DPDD_MS ceiling_fraction(DT_PROP_BY_IDX(DT_DRV_INST(0), dpd_wakeup_sequence, 0), NSEC_PER_MSEC)
|
|
#define T_CRDP_MS ceiling_fraction(DT_PROP_BY_IDX(DT_DRV_INST(0), dpd_wakeup_sequence, 1), NSEC_PER_MSEC)
|
|
#define T_RDP_MS ceiling_fraction(DT_PROP_BY_IDX(DT_DRV_INST(0), dpd_wakeup_sequence, 2), NSEC_PER_MSEC)
|
|
#else /* DPD_WAKEUP_SEQUENCE */
|
|
#define T_DPDD_MS 0
|
|
#endif /* DPD_WAKEUP_SEQUENCE */
|
|
|
|
/* Build-time data associated with the device. */
|
|
struct spi_nor_config {
|
|
/* Runtime SFDP stores no static configuration. */
|
|
|
|
#ifndef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
/* Size of device in bytes, from size property */
|
|
uint32_t flash_size;
|
|
|
|
#ifdef CONFIG_FLASH_PAGE_LAYOUT
|
|
/* Flash page layout can be determined from devicetree. */
|
|
struct flash_pages_layout layout;
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
|
|
/* Expected JEDEC ID, from jedec-id property */
|
|
uint8_t jedec_id[SPI_NOR_MAX_ID_LEN];
|
|
|
|
#if defined(CONFIG_SPI_NOR_SFDP_DEVICETREE)
|
|
/* Length of BFP structure, in 32-bit words. */
|
|
uint8_t bfp_len;
|
|
|
|
/* Pointer to the BFP table as read from the device
|
|
* (little-endian stored words), from sfdp-bfp property
|
|
*/
|
|
const struct jesd216_bfp *bfp;
|
|
#endif /* CONFIG_SPI_NOR_SFDP_DEVICETREE */
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
};
|
|
|
|
/**
|
|
* struct spi_nor_data - Structure for defining the SPI NOR access
|
|
* @spi: The SPI device
|
|
* @spi_cfg: The SPI configuration
|
|
* @cs_ctrl: The GPIO pin used to emulate the SPI CS if required
|
|
* @sem: The semaphore to access to the flash
|
|
*/
|
|
struct spi_nor_data {
|
|
struct k_sem sem;
|
|
const struct device *spi;
|
|
struct spi_config spi_cfg;
|
|
#if DT_INST_SPI_DEV_HAS_CS_GPIOS(0)
|
|
struct spi_cs_control cs_ctrl;
|
|
#endif /* DT_INST_SPI_DEV_HAS_CS_GPIOS(0) */
|
|
#if DT_INST_NODE_HAS_PROP(0, has_dpd)
|
|
/* Low 32-bits of uptime counter at which device last entered
|
|
* deep power-down.
|
|
*/
|
|
uint32_t ts_enter_dpd;
|
|
#endif
|
|
|
|
/* Minimal SFDP stores no dynamic configuration. Runtime and
|
|
* devicetree store page size and erase_types; runtime also
|
|
* stores flash size and layout.
|
|
*/
|
|
#ifndef CONFIG_SPI_NOR_SFDP_MINIMAL
|
|
|
|
struct jesd216_erase_type erase_types[JESD216_NUM_ERASE_TYPES];
|
|
|
|
/* Number of bytes per page */
|
|
uint16_t page_size;
|
|
|
|
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
/* Size of flash, in bytes */
|
|
uint32_t flash_size;
|
|
|
|
#ifdef CONFIG_FLASH_PAGE_LAYOUT
|
|
struct flash_pages_layout layout;
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
};
|
|
|
|
#ifdef CONFIG_SPI_NOR_SFDP_MINIMAL
|
|
/* The historically supported erase sizes. */
|
|
static const struct jesd216_erase_type minimal_erase_types[JESD216_NUM_ERASE_TYPES] = {
|
|
{
|
|
.cmd = SPI_NOR_CMD_BE,
|
|
.exp = 16,
|
|
},
|
|
{
|
|
.cmd = SPI_NOR_CMD_SE,
|
|
.exp = 12,
|
|
},
|
|
};
|
|
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
|
|
/* Get pointer to array of supported erase types. Static const for
|
|
* minimal, data for runtime and devicetree.
|
|
*/
|
|
static inline const struct jesd216_erase_type *
|
|
dev_erase_types(const struct device *dev)
|
|
{
|
|
#ifdef CONFIG_SPI_NOR_SFDP_MINIMAL
|
|
return minimal_erase_types;
|
|
#else /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
const struct spi_nor_data *data = dev->data;
|
|
|
|
return data->erase_types;
|
|
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
}
|
|
|
|
/* Get the size of the flash device. Data for runtime, constant for
|
|
* minimal and devicetree.
|
|
*/
|
|
static inline uint32_t dev_flash_size(const struct device *dev)
|
|
{
|
|
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
const struct spi_nor_data *data = dev->data;
|
|
|
|
return data->flash_size;
|
|
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
const struct spi_nor_config *cfg = dev->config;
|
|
|
|
return cfg->flash_size;
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
}
|
|
|
|
/* Get the flash device page size. Constant for minimal, data for
|
|
* runtime and devicetree.
|
|
*/
|
|
static inline uint16_t dev_page_size(const struct device *dev)
|
|
{
|
|
#ifdef CONFIG_SPI_NOR_SFDP_MINIMAL
|
|
return 256;
|
|
#else /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
const struct spi_nor_data *data = dev->data;
|
|
|
|
return data->page_size;
|
|
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
}
|
|
|
|
static const struct flash_parameters flash_nor_parameters = {
|
|
.write_block_size = 1,
|
|
.erase_value = 0xff,
|
|
};
|
|
|
|
/* Capture the time at which the device entered deep power-down. */
|
|
static inline void record_entered_dpd(const struct device *const dev)
|
|
{
|
|
#if DT_INST_NODE_HAS_PROP(0, has_dpd)
|
|
struct spi_nor_data *const driver_data = dev->data;
|
|
|
|
driver_data->ts_enter_dpd = k_uptime_get_32();
|
|
#endif
|
|
}
|
|
|
|
/* Check the current time against the time DPD was entered and delay
|
|
* until it's ok to initiate the DPD exit process.
|
|
*/
|
|
static inline void delay_until_exit_dpd_ok(const struct device *const dev)
|
|
{
|
|
#if DT_INST_NODE_HAS_PROP(0, has_dpd)
|
|
struct spi_nor_data *const driver_data = dev->data;
|
|
int32_t since = (int32_t)(k_uptime_get_32() - driver_data->ts_enter_dpd);
|
|
|
|
/* If the time is negative the 32-bit counter has wrapped,
|
|
* which is certainly long enough no further delay is
|
|
* required. Otherwise we have to check whether it's been
|
|
* long enough taking into account necessary delays for
|
|
* entering and exiting DPD.
|
|
*/
|
|
if (since >= 0) {
|
|
/* Subtract time required for DPD to be reached */
|
|
since -= T_DP_MS;
|
|
|
|
/* Subtract time required in DPD before exit */
|
|
since -= T_DPDD_MS;
|
|
|
|
/* If the adjusted time is negative we have to wait
|
|
* until it reaches zero before we can proceed.
|
|
*/
|
|
if (since < 0) {
|
|
k_sleep(K_MSEC((uint32_t)-since));
|
|
}
|
|
}
|
|
#endif /* DT_INST_NODE_HAS_PROP(0, has_dpd) */
|
|
}
|
|
|
|
/*
|
|
* @brief Send an SPI command
|
|
*
|
|
* @param dev Device struct
|
|
* @param opcode The command to send
|
|
* @param is_addressed A flag to define if the command is addressed
|
|
* @param addr The address to send
|
|
* @param data The buffer to store or read the value
|
|
* @param length The size of the buffer
|
|
* @param is_write A flag to define if it's a read or a write command
|
|
* @return 0 on success, negative errno code otherwise
|
|
*/
|
|
static int spi_nor_access(const struct device *const dev,
|
|
uint8_t opcode, bool is_addressed, off_t addr,
|
|
void *data, size_t length, bool is_write)
|
|
{
|
|
struct spi_nor_data *const driver_data = dev->data;
|
|
|
|
uint8_t buf[4] = {
|
|
opcode,
|
|
(addr & 0xFF0000) >> 16,
|
|
(addr & 0xFF00) >> 8,
|
|
(addr & 0xFF),
|
|
};
|
|
|
|
struct spi_buf spi_buf[2] = {
|
|
{
|
|
.buf = buf,
|
|
.len = (is_addressed) ? 4 : 1,
|
|
},
|
|
{
|
|
.buf = data,
|
|
.len = length
|
|
}
|
|
};
|
|
const struct spi_buf_set tx_set = {
|
|
.buffers = spi_buf,
|
|
.count = (length) ? 2 : 1
|
|
};
|
|
|
|
const struct spi_buf_set rx_set = {
|
|
.buffers = spi_buf,
|
|
.count = 2
|
|
};
|
|
|
|
if (is_write) {
|
|
return spi_write(driver_data->spi,
|
|
&driver_data->spi_cfg, &tx_set);
|
|
}
|
|
|
|
return spi_transceive(driver_data->spi,
|
|
&driver_data->spi_cfg, &tx_set, &rx_set);
|
|
}
|
|
|
|
#define spi_nor_cmd_read(dev, opcode, dest, length) \
|
|
spi_nor_access(dev, opcode, false, 0, dest, length, false)
|
|
#define spi_nor_cmd_addr_read(dev, opcode, addr, dest, length) \
|
|
spi_nor_access(dev, opcode, true, addr, dest, length, false)
|
|
#define spi_nor_cmd_write(dev, opcode) \
|
|
spi_nor_access(dev, opcode, false, 0, NULL, 0, true)
|
|
#define spi_nor_cmd_addr_write(dev, opcode, addr, src, length) \
|
|
spi_nor_access(dev, opcode, true, addr, (void *)src, length, true)
|
|
|
|
#if defined(CONFIG_SPI_NOR_SFDP_RUNTIME) || defined(CONFIG_FLASH_JESD216_API)
|
|
/*
|
|
* @brief Read content from the SFDP hierarchy
|
|
*
|
|
* @param dev Device struct
|
|
* @param addr The address to send
|
|
* @param data The buffer to store or read the value
|
|
* @param length The size of the buffer
|
|
* @return 0 on success, negative errno code otherwise
|
|
*/
|
|
static int read_sfdp(const struct device *const dev,
|
|
off_t addr, void *data, size_t length)
|
|
{
|
|
struct spi_nor_data *const driver_data = dev->data;
|
|
uint8_t buf[] = {
|
|
JESD216_CMD_READ_SFDP,
|
|
addr >> 16,
|
|
addr >> 8,
|
|
addr,
|
|
0, /* wait state */
|
|
};
|
|
struct spi_buf spi_buf[] = {
|
|
{
|
|
.buf = buf,
|
|
.len = sizeof(buf),
|
|
},
|
|
{
|
|
.buf = data,
|
|
.len = length,
|
|
}
|
|
};
|
|
const struct spi_buf_set buf_set = {
|
|
.buffers = spi_buf,
|
|
.count = ARRAY_SIZE(spi_buf),
|
|
};
|
|
|
|
return spi_transceive(driver_data->spi, &driver_data->spi_cfg,
|
|
&buf_set, &buf_set);
|
|
}
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
|
|
static int enter_dpd(const struct device *const dev)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (IS_ENABLED(DT_INST_PROP(0, has_dpd))) {
|
|
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_DPD);
|
|
if (ret == 0) {
|
|
record_entered_dpd(dev);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int exit_dpd(const struct device *const dev)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (IS_ENABLED(DT_INST_PROP(0, has_dpd))) {
|
|
delay_until_exit_dpd_ok(dev);
|
|
|
|
#if DT_INST_NODE_HAS_PROP(0, dpd_wakeup_sequence)
|
|
/* Assert CSn and wait for tCRDP.
|
|
*
|
|
* Unfortunately the SPI API doesn't allow us to
|
|
* control CSn so fake it by writing a known-supported
|
|
* single-byte command, hoping that'll hold the assert
|
|
* long enough. This is highly likely, since the
|
|
* duration is usually less than two SPI clock cycles.
|
|
*/
|
|
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_RDID);
|
|
|
|
/* Deassert CSn and wait for tRDP */
|
|
k_sleep(K_MSEC(T_RDP_MS));
|
|
#else /* DPD_WAKEUP_SEQUENCE */
|
|
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_RDPD);
|
|
|
|
if (ret == 0) {
|
|
#if DT_INST_NODE_HAS_PROP(0, t_exit_dpd)
|
|
k_sleep(K_MSEC(T_RES1_MS));
|
|
#endif /* T_EXIT_DPD */
|
|
}
|
|
#endif /* DPD_WAKEUP_SEQUENCE */
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Everything necessary to acquire owning access to the device.
|
|
*
|
|
* This means taking the lock and, if necessary, waking the device
|
|
* from deep power-down mode.
|
|
*/
|
|
static void acquire_device(const struct device *dev)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
|
|
struct spi_nor_data *const driver_data = dev->data;
|
|
|
|
k_sem_take(&driver_data->sem, K_FOREVER);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_SPI_NOR_IDLE_IN_DPD)) {
|
|
exit_dpd(dev);
|
|
}
|
|
}
|
|
|
|
/* Everything necessary to release access to the device.
|
|
*
|
|
* This means (optionally) putting the device into deep power-down
|
|
* mode, and releasing the lock.
|
|
*/
|
|
static void release_device(const struct device *dev)
|
|
{
|
|
if (IS_ENABLED(CONFIG_SPI_NOR_IDLE_IN_DPD)) {
|
|
enter_dpd(dev);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
|
|
struct spi_nor_data *const driver_data = dev->data;
|
|
|
|
k_sem_give(&driver_data->sem);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Wait until the flash is ready
|
|
*
|
|
* @param dev The device structure
|
|
* @return 0 on success, negative errno code otherwise
|
|
*/
|
|
static int spi_nor_wait_until_ready(const struct device *dev)
|
|
{
|
|
int ret;
|
|
uint8_t reg;
|
|
|
|
do {
|
|
ret = spi_nor_cmd_read(dev, SPI_NOR_CMD_RDSR, ®, 1);
|
|
} while (!ret && (reg & SPI_NOR_WIP_BIT));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_read(const struct device *dev, off_t addr, void *dest,
|
|
size_t size)
|
|
{
|
|
const size_t flash_size = dev_flash_size(dev);
|
|
int ret;
|
|
|
|
/* should be between 0 and flash size */
|
|
if ((addr < 0) || ((addr + size) > flash_size)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
acquire_device(dev);
|
|
|
|
spi_nor_wait_until_ready(dev);
|
|
|
|
ret = spi_nor_cmd_addr_read(dev, SPI_NOR_CMD_READ, addr, dest, size);
|
|
|
|
release_device(dev);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_write(const struct device *dev, off_t addr,
|
|
const void *src,
|
|
size_t size)
|
|
{
|
|
const size_t flash_size = dev_flash_size(dev);
|
|
const uint16_t page_size = dev_page_size(dev);
|
|
int ret = 0;
|
|
|
|
/* should be between 0 and flash size */
|
|
if ((addr < 0) || ((size + addr) > flash_size)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
acquire_device(dev);
|
|
|
|
while (size > 0) {
|
|
size_t to_write = size;
|
|
|
|
/* Don't write more than a page. */
|
|
if (to_write >= page_size) {
|
|
to_write = page_size;
|
|
}
|
|
|
|
/* Don't write across a page boundary */
|
|
if (((addr + to_write - 1U) / page_size)
|
|
!= (addr / page_size)) {
|
|
to_write = page_size - (addr % page_size);
|
|
}
|
|
|
|
spi_nor_cmd_write(dev, SPI_NOR_CMD_WREN);
|
|
ret = spi_nor_cmd_addr_write(dev, SPI_NOR_CMD_PP, addr,
|
|
src, to_write);
|
|
if (ret != 0) {
|
|
goto out;
|
|
}
|
|
|
|
size -= to_write;
|
|
src = (const uint8_t *)src + to_write;
|
|
addr += to_write;
|
|
|
|
spi_nor_wait_until_ready(dev);
|
|
}
|
|
|
|
out:
|
|
release_device(dev);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_erase(const struct device *dev, off_t addr, size_t size)
|
|
{
|
|
const size_t flash_size = dev_flash_size(dev);
|
|
int ret = 0;
|
|
|
|
/* erase area must be subregion of device */
|
|
if ((addr < 0) || ((size + addr) > flash_size)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* address must be sector-aligned */
|
|
if (!SPI_NOR_IS_SECTOR_ALIGNED(addr)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* size must be a multiple of sectors */
|
|
if ((size % SPI_NOR_SECTOR_SIZE) != 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
acquire_device(dev);
|
|
|
|
while ((size > 0) && (ret == 0)) {
|
|
spi_nor_cmd_write(dev, SPI_NOR_CMD_WREN);
|
|
|
|
if (size == flash_size) {
|
|
/* chip erase */
|
|
spi_nor_cmd_write(dev, SPI_NOR_CMD_CE);
|
|
size -= flash_size;
|
|
} else {
|
|
const struct jesd216_erase_type *erase_types =
|
|
dev_erase_types(dev);
|
|
const struct jesd216_erase_type *bet = NULL;
|
|
|
|
for (uint8_t ei = 0; ei < JESD216_NUM_ERASE_TYPES; ++ei) {
|
|
const struct jesd216_erase_type *etp =
|
|
&erase_types[ei];
|
|
|
|
if ((etp->exp != 0)
|
|
&& SPI_NOR_IS_ALIGNED(addr, etp->exp)
|
|
&& SPI_NOR_IS_ALIGNED(size, etp->exp)
|
|
&& ((bet == NULL)
|
|
|| (etp->exp > bet->exp))) {
|
|
bet = etp;
|
|
}
|
|
}
|
|
if (bet != NULL) {
|
|
spi_nor_cmd_addr_write(dev, bet->cmd, addr, NULL, 0);
|
|
addr += BIT(bet->exp);
|
|
size -= BIT(bet->exp);
|
|
} else {
|
|
LOG_DBG("Can't erase %zu at 0x%lx",
|
|
size, (long)addr);
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
spi_nor_wait_until_ready(dev);
|
|
}
|
|
|
|
release_device(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_write_protection_set(const struct device *dev,
|
|
bool write_protect)
|
|
{
|
|
int ret;
|
|
|
|
acquire_device(dev);
|
|
|
|
spi_nor_wait_until_ready(dev);
|
|
|
|
ret = spi_nor_cmd_write(dev, (write_protect) ?
|
|
SPI_NOR_CMD_WRDI : SPI_NOR_CMD_WREN);
|
|
|
|
if (IS_ENABLED(DT_INST_PROP(0, requires_ulbpr))
|
|
&& (ret == 0)
|
|
&& !write_protect) {
|
|
ret = spi_nor_cmd_write(dev, SPI_NOR_CMD_ULBPR);
|
|
}
|
|
|
|
release_device(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined(CONFIG_FLASH_JESD216_API)
|
|
|
|
static int spi_nor_sfdp_read(const struct device *dev, off_t addr,
|
|
void *dest, size_t size)
|
|
{
|
|
acquire_device(dev);
|
|
|
|
spi_nor_wait_until_ready(dev);
|
|
|
|
int ret = read_sfdp(dev, addr, dest, size);
|
|
|
|
release_device(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_FLASH_JESD216_API */
|
|
|
|
static int spi_nor_read_jedec_id(const struct device *dev,
|
|
uint8_t *id)
|
|
{
|
|
if (id == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
acquire_device(dev);
|
|
|
|
spi_nor_wait_until_ready(dev);
|
|
|
|
int ret = spi_nor_cmd_read(dev, SPI_NOR_CMD_RDID, id, SPI_NOR_MAX_ID_LEN);
|
|
|
|
release_device(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifndef CONFIG_SPI_NOR_SFDP_MINIMAL
|
|
|
|
static int spi_nor_process_bfp(const struct device *dev,
|
|
const struct jesd216_param_header *php,
|
|
const struct jesd216_bfp *bfp)
|
|
{
|
|
struct spi_nor_data *data = dev->data;
|
|
struct jesd216_erase_type *etp = data->erase_types;
|
|
const size_t flash_size = jesd216_bfp_density(bfp) / 8U;
|
|
|
|
LOG_INF("%s: %u MiBy flash", dev->name, (uint32_t)(flash_size >> 20));
|
|
|
|
/* Copy over the erase types, preserving their order. (The
|
|
* Sector Map Parameter table references them by index.)
|
|
*/
|
|
memset(data->erase_types, 0, sizeof(data->erase_types));
|
|
for (uint8_t ti = 1; ti <= ARRAY_SIZE(data->erase_types); ++ti) {
|
|
if (jesd216_bfp_erase(bfp, ti, etp) == 0) {
|
|
LOG_DBG("Erase %u with %02x", (uint32_t)BIT(etp->exp), etp->cmd);
|
|
}
|
|
++etp;
|
|
}
|
|
|
|
data->page_size = jesd216_bfp_page_size(php, bfp);
|
|
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
data->flash_size = flash_size;
|
|
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
if (flash_size != dev_flash_size(dev)) {
|
|
LOG_ERR("BFP flash size mismatch with devicetree");
|
|
return -EINVAL;
|
|
}
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
|
|
LOG_DBG("Page size %u bytes", data->page_size);
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_process_sfdp(const struct device *dev)
|
|
{
|
|
int rc;
|
|
|
|
#if defined(CONFIG_SPI_NOR_SFDP_RUNTIME)
|
|
/* For runtime we need to read the SFDP table, identify the
|
|
* BFP block, and process it.
|
|
*/
|
|
const uint8_t decl_nph = 2;
|
|
union {
|
|
/* We only process BFP so use one parameter block */
|
|
uint8_t raw[JESD216_SFDP_SIZE(decl_nph)];
|
|
struct jesd216_sfdp_header sfdp;
|
|
} u;
|
|
const struct jesd216_sfdp_header *hp = &u.sfdp;
|
|
|
|
rc = read_sfdp(dev, 0, u.raw, sizeof(u.raw));
|
|
if (rc != 0) {
|
|
LOG_ERR("SFDP read failed: %d", rc);
|
|
return rc;
|
|
}
|
|
|
|
uint32_t magic = jesd216_sfdp_magic(hp);
|
|
|
|
if (magic != JESD216_SFDP_MAGIC) {
|
|
LOG_ERR("SFDP magic %08x invalid", magic);
|
|
return -EINVAL;
|
|
}
|
|
|
|
LOG_INF("%s: SFDP v %u.%u AP %x with %u PH", dev->name,
|
|
hp->rev_major, hp->rev_minor, hp->access, 1 + hp->nph);
|
|
|
|
const struct jesd216_param_header *php = hp->phdr;
|
|
const struct jesd216_param_header *phpe = php + MIN(decl_nph, 1 + hp->nph);
|
|
|
|
while (php != phpe) {
|
|
uint16_t id = jesd216_param_id(php);
|
|
|
|
LOG_INF("PH%u: %04x rev %u.%u: %u DW @ %x",
|
|
(php - hp->phdr), id, php->rev_major, php->rev_minor,
|
|
php->len_dw, jesd216_param_addr(php));
|
|
|
|
if (id == JESD216_SFDP_PARAM_ID_BFP) {
|
|
union {
|
|
uint32_t dw[MIN(php->len_dw, 20)];
|
|
struct jesd216_bfp bfp;
|
|
} u;
|
|
const struct jesd216_bfp *bfp = &u.bfp;
|
|
|
|
rc = read_sfdp(dev, jesd216_param_addr(php), u.dw, sizeof(u.dw));
|
|
if (rc == 0) {
|
|
rc = spi_nor_process_bfp(dev, php, bfp);
|
|
}
|
|
|
|
if (rc != 0) {
|
|
LOG_INF("SFDP BFP failed: %d", rc);
|
|
break;
|
|
}
|
|
}
|
|
++php;
|
|
}
|
|
#elif defined(CONFIG_SPI_NOR_SFDP_DEVICETREE)
|
|
/* For devicetree we need to synthesize a parameter header and
|
|
* process the stored BFP data as if we had read it.
|
|
*/
|
|
const struct spi_nor_config *cfg = dev->config;
|
|
struct jesd216_param_header bfp_hdr = {
|
|
.len_dw = cfg->bfp_len,
|
|
};
|
|
|
|
rc = spi_nor_process_bfp(dev, &bfp_hdr, cfg->bfp);
|
|
#else
|
|
#error Unhandled SFDP choice
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
static int setup_pages_layout(const struct device *dev)
|
|
{
|
|
int rv = 0;
|
|
|
|
#if defined(CONFIG_SPI_NOR_SFDP_RUNTIME)
|
|
struct spi_nor_data *data = dev->data;
|
|
const size_t flash_size = dev_flash_size(dev);
|
|
const uint32_t layout_page_size = CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE;
|
|
uint8_t exp = 0;
|
|
|
|
/* Find the smallest erase size. */
|
|
for (size_t i = 0; i < ARRAY_SIZE(data->erase_types); ++i) {
|
|
const struct jesd216_erase_type *etp = &data->erase_types[i];
|
|
|
|
if ((etp->cmd != 0)
|
|
&& ((exp == 0) || (etp->exp < exp))) {
|
|
exp = etp->exp;
|
|
}
|
|
}
|
|
|
|
if (exp == 0) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uint32_t erase_size = BIT(exp);
|
|
|
|
/* Error if layout page size is not a multiple of smallest
|
|
* erase size.
|
|
*/
|
|
if ((layout_page_size % erase_size) != 0) {
|
|
LOG_ERR("layout page %u not compatible with erase size %u",
|
|
layout_page_size, erase_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Warn but accept layout page sizes that leave inaccessible
|
|
* space.
|
|
*/
|
|
if ((flash_size % layout_page_size) != 0) {
|
|
LOG_INF("layout page %u wastes space with device size %zu",
|
|
layout_page_size, flash_size);
|
|
}
|
|
|
|
data->layout.pages_size = layout_page_size;
|
|
data->layout.pages_count = flash_size / layout_page_size;
|
|
LOG_DBG("layout %u x %u By pages", data->layout.pages_count, data->layout.pages_size);
|
|
#elif defined(CONFIG_SPI_NOR_SFDP_DEVICETREE)
|
|
const struct spi_nor_config *cfg = dev->config;
|
|
const struct flash_pages_layout *layout = &cfg->layout;
|
|
const size_t flash_size = dev_flash_size(dev);
|
|
size_t layout_size = layout->pages_size * layout->pages_count;
|
|
|
|
if (flash_size != layout_size) {
|
|
LOG_ERR("device size %u mismatch %zu * %zu By pages",
|
|
flash_size, layout->pages_count, layout->pages_size);
|
|
return -EINVAL;
|
|
}
|
|
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
#error Unhandled SFDP choice
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
|
|
return rv;
|
|
}
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
|
|
/**
|
|
* @brief Configure the flash
|
|
*
|
|
* @param dev The flash device structure
|
|
* @param info The flash info structure
|
|
* @return 0 on success, negative errno code otherwise
|
|
*/
|
|
static int spi_nor_configure(const struct device *dev)
|
|
{
|
|
struct spi_nor_data *data = dev->data;
|
|
uint8_t jedec_id[SPI_NOR_MAX_ID_LEN];
|
|
#ifndef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
const struct spi_nor_config *cfg = dev->config;
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
int rc;
|
|
|
|
data->spi = device_get_binding(DT_INST_BUS_LABEL(0));
|
|
if (!data->spi) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
data->spi_cfg.frequency = DT_INST_PROP(0, spi_max_frequency);
|
|
data->spi_cfg.operation = SPI_WORD_SET(8);
|
|
data->spi_cfg.slave = DT_INST_REG_ADDR(0);
|
|
|
|
#if DT_INST_SPI_DEV_HAS_CS_GPIOS(0)
|
|
data->cs_ctrl.gpio_dev =
|
|
device_get_binding(DT_INST_SPI_DEV_CS_GPIOS_LABEL(0));
|
|
if (!data->cs_ctrl.gpio_dev) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
data->cs_ctrl.gpio_pin = DT_INST_SPI_DEV_CS_GPIOS_PIN(0);
|
|
data->cs_ctrl.gpio_dt_flags = DT_INST_SPI_DEV_CS_GPIOS_FLAGS(0);
|
|
data->cs_ctrl.delay = CONFIG_SPI_NOR_CS_WAIT_DELAY;
|
|
|
|
data->spi_cfg.cs = &data->cs_ctrl;
|
|
#endif /* DT_INST_SPI_DEV_HAS_CS_GPIOS(0) */
|
|
|
|
/* Might be in DPD if system restarted without power cycle. */
|
|
exit_dpd(dev);
|
|
|
|
/* now the spi bus is configured, we can verify SPI
|
|
* connectivity by reading the JEDEC ID.
|
|
*/
|
|
|
|
rc = spi_nor_read_jedec_id(dev, jedec_id);
|
|
if (rc != 0) {
|
|
LOG_ERR("JEDEC ID read failed: %d", rc);
|
|
return -ENODEV;
|
|
}
|
|
|
|
#ifndef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
/* For minimal and devicetree we need to check the JEDEC ID
|
|
* against the one from devicetree, to ensure we didn't find a
|
|
* device that has different parameters.
|
|
*/
|
|
|
|
if (memcmp(jedec_id, cfg->jedec_id, sizeof(jedec_id)) != 0) {
|
|
LOG_ERR("Device id %02x %02x %02x does not match config %02x %02x %02x",
|
|
jedec_id[0], jedec_id[1], jedec_id[2],
|
|
cfg->jedec_id[0], cfg->jedec_id[1], cfg->jedec_id[2]);
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_SPI_NOR_SFDP_MINIMAL
|
|
/* For devicetree and runtime we need to process BFP data and
|
|
* set up or validate page layout.
|
|
*/
|
|
rc = spi_nor_process_sfdp(dev);
|
|
if (rc != 0) {
|
|
LOG_ERR("SFDP read failed: %d", rc);
|
|
return -ENODEV;
|
|
}
|
|
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
rc = setup_pages_layout(dev);
|
|
if (rc != 0) {
|
|
LOG_ERR("layout setup failed: %d", rc);
|
|
return -ENODEV;
|
|
}
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
#endif /* CONFIG_SPI_NOR_SFDP_MINIMAL */
|
|
|
|
if (IS_ENABLED(CONFIG_SPI_NOR_IDLE_IN_DPD)
|
|
&& (enter_dpd(dev) != 0)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize and configure the flash
|
|
*
|
|
* @param name The flash name
|
|
* @return 0 on success, negative errno code otherwise
|
|
*/
|
|
static int spi_nor_init(const struct device *dev)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MULTITHREADING)) {
|
|
struct spi_nor_data *const driver_data = dev->data;
|
|
|
|
k_sem_init(&driver_data->sem, 1, K_SEM_MAX_LIMIT);
|
|
}
|
|
|
|
return spi_nor_configure(dev);
|
|
}
|
|
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
|
|
static void spi_nor_pages_layout(const struct device *dev,
|
|
const struct flash_pages_layout **layout,
|
|
size_t *layout_size)
|
|
{
|
|
/* Data for runtime, const for devicetree and minimal. */
|
|
#ifdef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
const struct spi_nor_data *data = dev->data;
|
|
|
|
*layout = &data->layout;
|
|
#else /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
const struct spi_nor_config *cfg = dev->config;
|
|
|
|
*layout = &cfg->layout;
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
|
|
*layout_size = 1;
|
|
}
|
|
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
|
|
static const struct flash_parameters *
|
|
flash_nor_get_parameters(const struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
return &flash_nor_parameters;
|
|
}
|
|
|
|
static const struct flash_driver_api spi_nor_api = {
|
|
.read = spi_nor_read,
|
|
.write = spi_nor_write,
|
|
.erase = spi_nor_erase,
|
|
.write_protection = spi_nor_write_protection_set,
|
|
.get_parameters = flash_nor_get_parameters,
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
.page_layout = spi_nor_pages_layout,
|
|
#endif
|
|
#if defined(CONFIG_FLASH_JESD216_API)
|
|
.sfdp_read = spi_nor_sfdp_read,
|
|
.read_jedec_id = spi_nor_read_jedec_id,
|
|
#endif
|
|
};
|
|
|
|
#ifndef CONFIG_SPI_NOR_SFDP_RUNTIME
|
|
/* We need to know the size and ID of the configuration data we're
|
|
* using so we can disable the device we see at runtime if it isn't
|
|
* compatible with what we're taking from devicetree or minimal.
|
|
*/
|
|
BUILD_ASSERT(DT_INST_NODE_HAS_PROP(0, jedec_id),
|
|
"jedec,spi-nor jedec-id required for non-runtime SFDP");
|
|
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
|
|
/* For devicetree or minimal page layout we need to know the size of
|
|
* the device. We can't extract it from the raw BFP data, so require
|
|
* it to be present in devicetree.
|
|
*/
|
|
BUILD_ASSERT(DT_INST_NODE_HAS_PROP(0, size),
|
|
"jedec,spi-nor size required for non-runtime SFDP page layout");
|
|
|
|
/* instance 0 size in bytes */
|
|
#define INST_0_BYTES (DT_INST_PROP(0, size) / 8)
|
|
|
|
BUILD_ASSERT(SPI_NOR_IS_SECTOR_ALIGNED(CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE),
|
|
"SPI_NOR_FLASH_LAYOUT_PAGE_SIZE must be multiple of 4096");
|
|
|
|
/* instance 0 page count */
|
|
#define LAYOUT_PAGES_COUNT (INST_0_BYTES / CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE)
|
|
|
|
BUILD_ASSERT((CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE * LAYOUT_PAGES_COUNT)
|
|
== INST_0_BYTES,
|
|
"SPI_NOR_FLASH_LAYOUT_PAGE_SIZE incompatible with flash size");
|
|
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
|
|
#ifdef CONFIG_SPI_NOR_SFDP_DEVICETREE
|
|
BUILD_ASSERT(DT_INST_NODE_HAS_PROP(0, sfdp_bfp),
|
|
"jedec,spi-nor sfdp-bfp required for devicetree SFDP");
|
|
|
|
static const __aligned(4) uint8_t bfp_data_0[] = DT_INST_PROP(0, sfdp_bfp);
|
|
#endif /* CONFIG_SPI_NOR_SFDP_DEVICETREE */
|
|
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
|
|
static const struct spi_nor_config spi_nor_config_0 = {
|
|
#if !defined(CONFIG_SPI_NOR_SFDP_RUNTIME)
|
|
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
|
|
.layout = {
|
|
.pages_count = LAYOUT_PAGES_COUNT,
|
|
.pages_size = CONFIG_SPI_NOR_FLASH_LAYOUT_PAGE_SIZE,
|
|
},
|
|
#undef LAYOUT_PAGES_COUNT
|
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
|
|
|
|
.flash_size = DT_INST_PROP(0, size) / 8,
|
|
.jedec_id = DT_INST_PROP(0, jedec_id),
|
|
|
|
#ifdef CONFIG_SPI_NOR_SFDP_DEVICETREE
|
|
.bfp_len = sizeof(bfp_data_0) / 4,
|
|
.bfp = (const struct jesd216_bfp *)bfp_data_0,
|
|
#endif /* CONFIG_SPI_NOR_SFDP_DEVICETREE */
|
|
|
|
#endif /* CONFIG_SPI_NOR_SFDP_RUNTIME */
|
|
};
|
|
|
|
static struct spi_nor_data spi_nor_data_0;
|
|
|
|
DEVICE_DT_INST_DEFINE(0, &spi_nor_init, device_pm_control_nop,
|
|
&spi_nor_data_0, &spi_nor_config_0,
|
|
POST_KERNEL, CONFIG_SPI_NOR_INIT_PRIORITY,
|
|
&spi_nor_api);
|