zephyr/drivers/memc/sifive_ddr.c
Franciszek Zdobylak 71a6c22731 drivers: memc: implement sifive ddr mem controller
Implementation for DDR memory controller for FU740 SoC.

Signed-off-by: Franciszek Zdobylak <fzdobylak@antmicro.com>
2023-04-12 13:05:55 +02:00

213 lines
5.9 KiB
C

/*
* (C) Copyright 2020-2021 SiFive, Inc.
* (C) Copyright 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*
* Based on implementation of fsbl in:
* https://github.com/sifive/freedom-u540-c000-bootloader
*/
#define DT_DRV_COMPAT sifive_fu740_c000_ddr
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/logging/log.h>
#include <soc.h>
#include "sifive_ddrregs.h"
LOG_MODULE_REGISTER(sifive_ddr);
#define DRAM_CLASS_OFFSET 8
#define DRAM_CLASS_DDR4 0xA
#define OPTIMAL_RMODW_EN BIT(0)
#define DISABLE_RD_INTERLEAVE BIT(16)
#define OUT_OF_RANGE BIT(1)
#define MULTIPLE_OUT_OF_RANGE BIT(2)
#define PORT_COMMAND_CHANNEL_ERROR BIT(7)
#define MC_INIT_COMPLETE BIT(8)
#define LEVELING_OPERATION_COMPLETED BIT(22)
#define DFI_PHY_WRLELV_MODE BIT(24)
#define DFI_PHY_RDLVL_MODE BIT(24)
#define DFI_PHY_RDLVL_GATE_MODE BIT(0)
#define VREF_EN BIT(24)
#define PORT_ADDR_PROTECTION_EN BIT(0)
#define AXI0_ADDRESS_RANGE_ENABLE BIT(8)
#define AXI0_RANGE_PROT_BITS_0 (BIT(24) | BIT(25));
#define RDLVL_EN BIT(16)
#define RDLVL_GATE_EN BIT(24)
#define WRLVL_EN BIT(0)
#define PHY_RX_CAL_DQ0_0_OFFSET 0
#define PHY_RX_CAL_DQ1_0_OFFSET 16
#define DDR_CTL_REG(d, i) (*(d->ddrctl + i))
#define DDR_PHY_REG(d, i) (*(d->ddrphy + i))
struct ddr_ctrl_data {
volatile uint32_t *const ddrctl;
volatile uint32_t *const ddrphy;
volatile uint32_t *const ddr_physical_filter;
volatile uint32_t *const ddr_start;
const size_t ddr_size;
};
static inline void phy_reset(struct ddr_ctrl_data *ddr_ctrl)
{
unsigned int i;
for (i = 1152; i <= 1214; i++) {
DDR_PHY_REG(ddr_ctrl, i) = ddr_phy_settings[i];
}
for (i = 0; i <= 1151; i++) {
DDR_PHY_REG(ddr_ctrl, i) = ddr_phy_settings[i];
}
}
static inline void ddr_writeregmap(struct ddr_ctrl_data *ddr_ctrl)
{
unsigned int i;
for (i = 0; i <= 264; i++) {
DDR_CTL_REG(ddr_ctrl, i) = ddr_ctl_settings[i];
}
phy_reset(ddr_ctrl);
}
static inline uint32_t ddr_getdramclass(struct ddr_ctrl_data *ddr_ctrl)
{
return ((DDR_CTL_REG(ddr_ctrl, 0) >> DRAM_CLASS_OFFSET) & 0xF);
}
static inline void check_errata(uint32_t regbase, uint32_t updownreg)
{
uint64_t fails = 0;
uint32_t bit, dq;
for (bit = 0, dq = 0; bit < 2; bit++, dq++) {
uint32_t phy_rx_cal_dqn_0_offset;
if (bit == 0) {
phy_rx_cal_dqn_0_offset = PHY_RX_CAL_DQ0_0_OFFSET;
} else {
phy_rx_cal_dqn_0_offset = PHY_RX_CAL_DQ1_0_OFFSET;
}
uint32_t down = (updownreg >> phy_rx_cal_dqn_0_offset) & 0x3F;
uint32_t up = (updownreg >> (phy_rx_cal_dqn_0_offset + 6)) & 0x3F;
uint8_t failc0 = ((down == 0) && (up == 0x3F));
uint8_t failc1 = ((up == 0) && (down == 0x3F));
/* print error message on failure */
if (failc0 || failc1) {
if (fails == 0) {
LOG_ERR("DDR error in fixing up");
}
char slicelsc = '0';
char slicemsc = '0';
fails |= (1 << dq);
slicelsc += (dq % 10);
slicemsc += (dq / 10);
LOG_ERR("S %c%c%c", slicemsc, slicelsc, failc0 ? 'U' : 'D');
}
}
}
static inline uint64_t ddr_phy_fixup(struct ddr_ctrl_data *ddr_ctrl)
{
/* return bitmask of failed lanes */
uint32_t slicebase = 0;
uint32_t updownreg;
/* check errata condition */
for (uint32_t slice = 0; slice < 8; slice++) {
uint32_t regbase = slicebase + 34;
for (uint32_t reg = 0 ; reg < 4; reg++) {
updownreg = DDR_PHY_REG(ddr_ctrl, (regbase + reg));
check_errata(regbase, updownreg);
}
slicebase += 128;
}
return (0);
}
static int ddr_init(const struct device *dev)
{
struct ddr_ctrl_data *ddr_ctrl = dev->data;
LOG_DBG("start: 0x%lx", (uintptr_t)ddr_ctrl->ddr_start);
LOG_DBG("size: 0x%lx", ddr_ctrl->ddr_size);
ddr_writeregmap(ddr_ctrl);
DDR_CTL_REG(ddr_ctrl, 120) |= DISABLE_RD_INTERLEAVE;
DDR_CTL_REG(ddr_ctrl, 21) &= ~OPTIMAL_RMODW_EN;
DDR_CTL_REG(ddr_ctrl, 170) |= WRLVL_EN | DFI_PHY_WRLELV_MODE;
DDR_CTL_REG(ddr_ctrl, 181) |= DFI_PHY_RDLVL_MODE;
DDR_CTL_REG(ddr_ctrl, 260) |= RDLVL_EN;
DDR_CTL_REG(ddr_ctrl, 260) |= RDLVL_GATE_EN;
DDR_CTL_REG(ddr_ctrl, 182) |= DFI_PHY_RDLVL_GATE_MODE;
if (ddr_getdramclass(ddr_ctrl) == DRAM_CLASS_DDR4) {
DDR_CTL_REG(ddr_ctrl, 184) |= VREF_EN;
}
DDR_CTL_REG(ddr_ctrl, 136) |= LEVELING_OPERATION_COMPLETED;
DDR_CTL_REG(ddr_ctrl, 136) |= MC_INIT_COMPLETE;
DDR_CTL_REG(ddr_ctrl, 136) |= OUT_OF_RANGE | MULTIPLE_OUT_OF_RANGE;
/* Setup range protection */
size_t end_addr_16Kblocks = ((ddr_ctrl->ddr_size >> 14) & 0x7FFFFF) - 1;
DDR_CTL_REG(ddr_ctrl, 209) = 0x0;
DDR_CTL_REG(ddr_ctrl, 210) = ((uint32_t) end_addr_16Kblocks);
DDR_CTL_REG(ddr_ctrl, 212) = 0x0;
DDR_CTL_REG(ddr_ctrl, 214) = 0x0;
DDR_CTL_REG(ddr_ctrl, 216) = 0x0;
DDR_CTL_REG(ddr_ctrl, 224) |= AXI0_RANGE_PROT_BITS_0;
DDR_CTL_REG(ddr_ctrl, 225) = 0xFFFFFFFF;
DDR_CTL_REG(ddr_ctrl, 208) |= AXI0_ADDRESS_RANGE_ENABLE;
DDR_CTL_REG(ddr_ctrl, 208) |= PORT_ADDR_PROTECTION_EN;
/* Mask port command error interrupt */
DDR_CTL_REG(ddr_ctrl, 136) |= PORT_COMMAND_CHANNEL_ERROR;
DDR_CTL_REG(ddr_ctrl, 0) |= 1;
/* WAIT for initialization complete : bit 8 of INT_STATUS (DENALI_CTL_132) 0x210 */
while ((DDR_CTL_REG(ddr_ctrl, 132) & MC_INIT_COMPLETE) != 0) {
;
}
uint64_t ddr_end = (uint64_t)ddr_ctrl->ddr_start + ddr_ctrl->ddr_size;
/* Disable the BusBlocker in front of the controller AXI slave ports */
volatile uint64_t *filterreg = (volatile uint64_t *)ddr_ctrl->ddr_physical_filter;
filterreg[0] = 0x0f00000000000000UL | (ddr_end >> 2);
/* ^^ RWX + TOR */
ddr_phy_fixup(ddr_ctrl);
return 0;
}
#define DDRCTL_NODE DT_NODELABEL(dmc)
static struct ddr_ctrl_data ddrctl_private_data = {
.ddrctl = (uint32_t *)DT_REG_ADDR_BY_IDX(DDRCTL_NODE, 0),
.ddrphy = (uint32_t *)DT_REG_ADDR_BY_IDX(DDRCTL_NODE, 1),
.ddr_physical_filter = (uint32_t *)DT_REG_ADDR_BY_IDX(DDRCTL_NODE, 2),
.ddr_start = (uint32_t *)DT_REG_ADDR(DT_NODELABEL(ram0)),
.ddr_size = DT_REG_SIZE(DT_NODELABEL(ram0)),
};
DEVICE_DT_INST_DEFINE(0, ddr_init, NULL, &ddrctl_private_data, NULL, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);