zephyr/drivers/input/input_kbd_matrix.c
Fabio Baltieri ad9f2c599b input: kbd_matrix: skip column with empty mask
The active key mask can be used for supporting multiple keyboard layouts
with a single firmware. A possible use case is to support keyboard with
or without a numpad, in which case an entire set of columns may be
missing. Add a check to detect this condition and skip scanning that
column entirely if no keys are defined in it.

Signed-off-by: Fabio Baltieri <fabiobaltieri@google.com>
2024-03-04 14:09:08 +01:00

352 lines
9.2 KiB
C

/*
* Copyright 2019 Intel Corporation
* Copyright 2022 Nuvoton Technology Corporation.
* Copyright 2023 Google LLC
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/input/input.h>
#include <zephyr/input/input_kbd_matrix.h>
#include <zephyr/kernel.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
LOG_MODULE_REGISTER(input_kbd_matrix, CONFIG_INPUT_LOG_LEVEL);
void input_kbd_matrix_poll_start(const struct device *dev)
{
struct input_kbd_matrix_common_data *data = dev->data;
k_sem_give(&data->poll_lock);
}
static bool input_kbd_matrix_ghosting(const struct device *dev)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
const kbd_row_t *state = cfg->matrix_new_state;
/*
* Matrix keyboard designs are suceptible to ghosting.
* An extra key appears to be pressed when 3 keys belonging to the same
* block are pressed. For example, in the following block:
*
* . . w . q .
* . . . . . .
* . . . . . .
* . . m . a .
*
* the key m would look as pressed if the user pressed keys w, q and a
* simultaneously. A block can also be formed, with not adjacent
* columns.
*/
for (int c = 0; c < cfg->col_size; c++) {
if (!state[c]) {
continue;
}
for (int c_next = c + 1; c_next < cfg->col_size; c_next++) {
/*
* We AND the columns to detect a "block". This is an
* indication of ghosting, due to current flowing from
* a key which was never pressed. In our case, current
* flowing is a bit set to 1 as we flipped the bits
* when the matrix was scanned. Now we OR the colums
* using z&(z-1) which is non-zero only if z has more
* than one bit set.
*/
kbd_row_t common_row_bits = state[c] & state[c_next];
if (common_row_bits & (common_row_bits - 1)) {
return true;
}
}
}
return false;
}
static void input_kbd_matrix_drive_column(const struct device *dev, int col)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
const struct input_kbd_matrix_api *api = cfg->api;
api->drive_column(dev, col);
#ifdef CONFIG_INPUT_KBD_DRIVE_COLUMN_HOOK
input_kbd_matrix_drive_column_hook(dev, col);
#endif
}
static bool input_kbd_matrix_scan(const struct device *dev)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
const struct input_kbd_matrix_api *api = cfg->api;
kbd_row_t row;
kbd_row_t key_event = 0U;
for (int col = 0; col < cfg->col_size; col++) {
if (cfg->actual_key_mask != NULL &&
cfg->actual_key_mask[col] == 0) {
continue;
}
input_kbd_matrix_drive_column(dev, col);
/* Allow the matrix to stabilize before reading it */
k_busy_wait(cfg->settle_time_us);
row = api->read_row(dev);
if (cfg->actual_key_mask != NULL) {
row &= cfg->actual_key_mask[col];
}
cfg->matrix_new_state[col] = row;
key_event |= row;
}
input_kbd_matrix_drive_column(dev, INPUT_KBD_MATRIX_COLUMN_DRIVE_NONE);
return key_event != 0U;
}
static void input_kbd_matrix_update_state(const struct device *dev)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
struct input_kbd_matrix_common_data *data = dev->data;
kbd_row_t *matrix_new_state = cfg->matrix_new_state;
uint32_t cycles_now;
kbd_row_t row_changed;
kbd_row_t deb_col;
cycles_now = k_cycle_get_32();
data->scan_clk_cycle[data->scan_cycles_idx] = cycles_now;
/*
* The intent of this loop is to gather information related to key
* changes.
*/
for (int c = 0; c < cfg->col_size; c++) {
/* Check if there was an update from the previous scan */
row_changed = matrix_new_state[c] ^ cfg->matrix_previous_state[c];
if (!row_changed) {
continue;
}
for (int r = 0; r < cfg->row_size; r++) {
uint8_t cyc_idx = c * cfg->row_size + r;
/*
* Index all they keys that changed for each row in
* order to debounce each key in terms of it
*/
if (row_changed & BIT(r)) {
cfg->scan_cycle_idx[cyc_idx] = data->scan_cycles_idx;
}
}
cfg->matrix_unstable_state[c] |= row_changed;
cfg->matrix_previous_state[c] = matrix_new_state[c];
}
for (int c = 0; c < cfg->col_size; c++) {
deb_col = cfg->matrix_unstable_state[c];
if (!deb_col) {
continue;
}
/* Debouncing for each row key occurs here */
for (int r = 0; r < cfg->row_size; r++) {
kbd_row_t mask = BIT(r);
kbd_row_t row_bit = matrix_new_state[c] & mask;
/* Continue if we already debounce a key */
if (!(deb_col & mask)) {
continue;
}
uint8_t cyc_idx = c * cfg->row_size + r;
uint8_t scan_cyc_idx = cfg->scan_cycle_idx[cyc_idx];
uint32_t scan_clk_cycle = data->scan_clk_cycle[scan_cyc_idx];
/* Convert the clock cycle differences to usec */
uint32_t deb_t_us = k_cyc_to_us_floor32(cycles_now - scan_clk_cycle);
/* Does the key requires more time to be debounced? */
if (deb_t_us < (row_bit ? cfg->debounce_down_us : cfg->debounce_up_us)) {
/* Need more time to debounce */
continue;
}
cfg->matrix_unstable_state[c] &= ~mask;
/* Check if there was a change in the stable state */
if ((cfg->matrix_stable_state[c] & mask) == row_bit) {
/* Key state did not change */
continue;
}
/*
* The current row has been debounced, therefore update
* the stable state. Then, proceed to notify the
* application about the keys pressed.
*/
cfg->matrix_stable_state[c] ^= mask;
input_report_abs(dev, INPUT_ABS_X, c, false, K_FOREVER);
input_report_abs(dev, INPUT_ABS_Y, r, false, K_FOREVER);
input_report_key(dev, INPUT_BTN_TOUCH, row_bit, true, K_FOREVER);
}
}
data->scan_cycles_idx = (data->scan_cycles_idx + 1) % INPUT_KBD_MATRIX_SCAN_OCURRENCES;
}
static bool input_kbd_matrix_check_key_events(const struct device *dev)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
bool key_pressed;
/* Scan the matrix */
key_pressed = input_kbd_matrix_scan(dev);
for (int c = 0; c < cfg->col_size; c++) {
LOG_DBG("c=%2d u=" PRIkbdrow " p=" PRIkbdrow " n=" PRIkbdrow,
c,
cfg->matrix_unstable_state[c],
cfg->matrix_previous_state[c],
cfg->matrix_new_state[c]);
}
/* Abort if ghosting is detected */
if (cfg->ghostkey_check && input_kbd_matrix_ghosting(dev)) {
return key_pressed;
}
input_kbd_matrix_update_state(dev);
return key_pressed;
}
static k_timepoint_t input_kbd_matrix_poll_timeout(const struct device *dev)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
if (cfg->poll_timeout_ms == 0) {
return sys_timepoint_calc(K_FOREVER);
}
return sys_timepoint_calc(K_MSEC(cfg->poll_timeout_ms));
}
static void input_kbd_matrix_poll(const struct device *dev)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
k_timepoint_t poll_time_end;
uint32_t current_cycles;
uint32_t cycles_diff;
uint32_t wait_period_us;
poll_time_end = input_kbd_matrix_poll_timeout(dev);
while (true) {
uint32_t start_period_cycles = k_cycle_get_32();
if (input_kbd_matrix_check_key_events(dev)) {
poll_time_end = input_kbd_matrix_poll_timeout(dev);
} else if (sys_timepoint_expired(poll_time_end)) {
break;
}
/*
* Subtract the time invested from the sleep period in order to
* compensate for the time invested in debouncing a key
*/
current_cycles = k_cycle_get_32();
cycles_diff = current_cycles - start_period_cycles;
wait_period_us = cfg->poll_period_us - k_cyc_to_us_floor32(cycles_diff);
wait_period_us = CLAMP(wait_period_us,
USEC_PER_MSEC, cfg->poll_period_us);
LOG_DBG("wait_period_us: %d", wait_period_us);
/* Allow other threads to run while we sleep */
k_usleep(wait_period_us);
}
}
static void input_kbd_matrix_polling_thread(void *arg1, void *unused2, void *unused3)
{
const struct device *dev = arg1;
const struct input_kbd_matrix_common_config *cfg = dev->config;
const struct input_kbd_matrix_api *api = cfg->api;
struct input_kbd_matrix_common_data *data = dev->data;
ARG_UNUSED(unused2);
ARG_UNUSED(unused3);
while (true) {
input_kbd_matrix_drive_column(dev, INPUT_KBD_MATRIX_COLUMN_DRIVE_ALL);
api->set_detect_mode(dev, true);
/* Check the rows again after enabling the interrupt to catch
* any potential press since the last read.
*/
if (api->read_row(dev) != 0) {
input_kbd_matrix_poll_start(dev);
}
k_sem_take(&data->poll_lock, K_FOREVER);
LOG_DBG("scan start");
/* Disable interrupt of KSI pins and start polling */
api->set_detect_mode(dev, false);
input_kbd_matrix_poll(dev);
}
}
int input_kbd_matrix_common_init(const struct device *dev)
{
struct input_kbd_matrix_common_data *data = dev->data;
k_sem_init(&data->poll_lock, 0, 1);
k_thread_create(&data->thread, data->thread_stack,
K_KERNEL_STACK_SIZEOF(data->thread_stack),
input_kbd_matrix_polling_thread, (void *)dev, NULL, NULL,
CONFIG_INPUT_KBD_MATRIX_THREAD_PRIORITY, 0, K_NO_WAIT);
k_thread_name_set(&data->thread, dev->name);
return 0;
}
#if CONFIG_INPUT_KBD_ACTUAL_KEY_MASK_DYNAMIC
int input_kbd_matrix_actual_key_mask_set(const struct device *dev,
uint8_t row, uint8_t col, bool enabled)
{
const struct input_kbd_matrix_common_config *cfg = dev->config;
if (row >= cfg->row_size || col >= cfg->col_size) {
return -EINVAL;
}
if (cfg->actual_key_mask == NULL) {
LOG_WRN("actual-key-mask not defined for %s", dev->name);
return -EINVAL;
}
WRITE_BIT(cfg->actual_key_mask[col], row, enabled);
return 0;
}
#endif