zephyr/drivers/ieee802154/ieee802154_nrf5.c
Jedrzej Ciupis 8ed202b43d drivers: ieee802154: fix freeing Rx buffer
This commit fixes a bug where an already received Rx frame could not be
processed by the IEEE 802.15.4 driver.

In the current implementation, buffer is marked as free and released to
the buffer pool after `nrf_802154_buffer_free_raw` finishes executing.
However, delays caused by thread scheduling might result in a new frame
being already received and provided to the driver before
`nrf_802154_buffer_free_raw` returns. Such a situation ends in an
assertion now.

This commit changes that behavior by marking the buffer as free before
calling `nrf_802154_buffer_free_raw`.

Signed-off-by: Jedrzej Ciupis <jedrzej.ciupis@nordicsemi.no>
2022-07-04 16:39:14 +02:00

1198 lines
31 KiB
C

/* ieee802154_nrf5.c - nRF5 802.15.4 driver */
/*
* Copyright (c) 2017 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_MODULE_NAME ieee802154_nrf5
#if defined(CONFIG_IEEE802154_DRIVER_LOG_LEVEL)
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#else
#define LOG_LEVEL LOG_LEVEL_NONE
#endif
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/debug/stack.h>
#include <soc.h>
#include <soc_secure.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/debug/stack.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#if defined(CONFIG_NET_L2_OPENTHREAD)
#include <zephyr/net/openthread.h>
#endif
#include <zephyr/sys/byteorder.h>
#include <string.h>
#include <zephyr/random/rand32.h>
#include <zephyr/net/ieee802154_radio.h>
#include "ieee802154_nrf5.h"
#include "nrf_802154.h"
#include "nrf_802154_const.h"
#if defined(CONFIG_NRF_802154_SER_HOST)
#include "nrf_802154_serialization_error.h"
#endif
struct nrf5_802154_config {
void (*irq_config_func)(const struct device *dev);
};
static struct nrf5_802154_data nrf5_data;
#define ACK_REQUEST_BYTE 1
#define ACK_REQUEST_BIT (1 << 5)
#define FRAME_PENDING_BYTE 1
#define FRAME_PENDING_BIT (1 << 4)
#define DRX_SLOT_PH 0 /* Placeholder delayed reception window ID */
#define DRX_SLOT_RX 1 /* Actual delayed reception window ID */
#define PH_DURATION 10 /* Duration of the placeholder window, in microseconds */
#if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
#if defined(CONFIG_SOC_NRF5340_CPUAPP)
#if defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
#error "NRF_UICR->OTP is not supported to read from non-secure"
#else
#define EUI64_ADDR (NRF_UICR->OTP)
#endif /* CONFIG_TRUSTED_EXECUTION_NONSECURE */
#else
#define EUI64_ADDR (NRF_UICR->CUSTOMER)
#endif /* CONFIG_SOC_NRF5340_CPUAPP */
#endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */
#if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
#define EUI64_ADDR_HIGH CONFIG_IEEE802154_NRF5_UICR_EUI64_REG
#define EUI64_ADDR_LOW (CONFIG_IEEE802154_NRF5_UICR_EUI64_REG + 1)
#else
#define EUI64_ADDR_HIGH 0
#define EUI64_ADDR_LOW 1
#endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */
/* Convenience defines for RADIO */
#define NRF5_802154_DATA(dev) \
((struct nrf5_802154_data * const)(dev)->data)
#define NRF5_802154_CFG(dev) \
((const struct nrf5_802154_config * const)(dev)->config)
#if CONFIG_IEEE802154_VENDOR_OUI_ENABLE
#define IEEE802154_NRF5_VENDOR_OUI CONFIG_IEEE802154_VENDOR_OUI
#else
#define IEEE802154_NRF5_VENDOR_OUI (uint32_t)0xF4CE36
#endif
static void nrf5_get_eui64(uint8_t *mac)
{
uint64_t factoryAddress;
uint32_t index = 0;
#if !defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
uint32_t deviceid[2];
/* Set the MAC Address Block Larger (MA-L) formerly called OUI. */
mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 16) & 0xff;
mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 8) & 0xff;
mac[index++] = IEEE802154_NRF5_VENDOR_OUI & 0xff;
soc_secure_read_deviceid(deviceid);
factoryAddress = (uint64_t)deviceid[EUI64_ADDR_HIGH] << 32;
factoryAddress |= deviceid[EUI64_ADDR_LOW];
#else
/* Use device identifier assigned during the production. */
factoryAddress = (uint64_t)EUI64_ADDR[EUI64_ADDR_HIGH] << 32;
factoryAddress |= EUI64_ADDR[EUI64_ADDR_LOW];
#endif
memcpy(mac + index, &factoryAddress, sizeof(factoryAddress) - index);
}
static void nrf5_rx_thread(void *arg1, void *arg2, void *arg3)
{
struct nrf5_802154_data *nrf5_radio = (struct nrf5_802154_data *)arg1;
struct net_pkt *pkt;
struct nrf5_802154_rx_frame *rx_frame;
uint8_t pkt_len;
uint8_t *psdu;
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
while (1) {
pkt = NULL;
rx_frame = NULL;
LOG_DBG("Waiting for frame");
rx_frame = k_fifo_get(&nrf5_radio->rx_fifo, K_FOREVER);
__ASSERT_NO_MSG(rx_frame->psdu);
/* rx_mpdu contains length, psdu, fcs|lqi
* The last 2 bytes contain LQI or FCS, depending if
* automatic CRC handling is enabled or not, respectively.
*/
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) {
pkt_len = rx_frame->psdu[0];
} else {
pkt_len = rx_frame->psdu[0] - NRF5_FCS_LENGTH;
}
__ASSERT_NO_MSG(pkt_len <= CONFIG_NET_BUF_DATA_SIZE);
LOG_DBG("Frame received");
/* Block the RX thread until net_pkt is available, so that we
* don't drop already ACKed frame in case of temporary net_pkt
* scarcity. The nRF 802154 radio driver will accumulate any
* incoming frames until it runs out of internal buffers (and
* thus stops acknowledging consecutive frames).
*/
pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, pkt_len,
AF_UNSPEC, 0, K_FOREVER);
if (net_pkt_write(pkt, rx_frame->psdu + 1, pkt_len)) {
goto drop;
}
net_pkt_set_ieee802154_lqi(pkt, rx_frame->lqi);
net_pkt_set_ieee802154_rssi(pkt, rx_frame->rssi);
net_pkt_set_ieee802154_ack_fpb(pkt, rx_frame->ack_fpb);
#if defined(CONFIG_NET_PKT_TIMESTAMP)
struct net_ptp_time timestamp = {
.second = rx_frame->time / USEC_PER_SEC,
.nanosecond =
(rx_frame->time % USEC_PER_SEC) * NSEC_PER_USEC
};
net_pkt_set_timestamp(pkt, &timestamp);
#endif
LOG_DBG("Caught a packet (%u) (LQI: %u)",
pkt_len, rx_frame->lqi);
if (net_recv_data(nrf5_radio->iface, pkt) < 0) {
LOG_ERR("Packet dropped by NET stack");
goto drop;
}
psdu = rx_frame->psdu;
rx_frame->psdu = NULL;
nrf_802154_buffer_free_raw(psdu);
if (LOG_LEVEL >= LOG_LEVEL_DBG) {
log_stack_usage(&nrf5_radio->rx_thread);
}
continue;
drop:
psdu = rx_frame->psdu;
rx_frame->psdu = NULL;
nrf_802154_buffer_free_raw(psdu);
net_pkt_unref(pkt);
}
}
static void nrf5_get_capabilities_at_boot(void)
{
nrf_802154_capabilities_t caps = nrf_802154_capabilities_get();
nrf5_data.capabilities =
IEEE802154_HW_FCS |
IEEE802154_HW_PROMISC |
IEEE802154_HW_FILTER |
((caps & NRF_802154_CAPABILITY_CSMA) ? IEEE802154_HW_CSMA : 0UL) |
IEEE802154_HW_2_4_GHZ |
IEEE802154_HW_TX_RX_ACK |
IEEE802154_HW_ENERGY_SCAN |
((caps & NRF_802154_CAPABILITY_DELAYED_TX) ? IEEE802154_HW_TXTIME : 0UL) |
((caps & NRF_802154_CAPABILITY_DELAYED_RX) ? IEEE802154_HW_RXTIME : 0UL) |
IEEE802154_HW_SLEEP_TO_TX |
((caps & NRF_802154_CAPABILITY_SECURITY) ? IEEE802154_HW_TX_SEC : 0UL);
}
/* Radio device API */
static enum ieee802154_hw_caps nrf5_get_capabilities(const struct device *dev)
{
return nrf5_data.capabilities;
}
static int nrf5_cca(const struct device *dev)
{
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
if (!nrf_802154_cca()) {
LOG_DBG("CCA failed");
return -EBUSY;
}
/* The nRF driver guarantees that a callback will be called once
* the CCA function is done, thus unlocking the semaphore.
*/
k_sem_take(&nrf5_radio->cca_wait, K_FOREVER);
LOG_DBG("Channel free? %d", nrf5_radio->channel_free);
return nrf5_radio->channel_free ? 0 : -EBUSY;
}
static int nrf5_set_channel(const struct device *dev, uint16_t channel)
{
ARG_UNUSED(dev);
LOG_DBG("%u", channel);
if (channel < 11 || channel > 26) {
return -EINVAL;
}
nrf_802154_channel_set(channel);
return 0;
}
static int nrf5_energy_scan_start(const struct device *dev,
uint16_t duration,
energy_scan_done_cb_t done_cb)
{
int err = 0;
ARG_UNUSED(dev);
if (nrf5_data.energy_scan_done == NULL) {
nrf5_data.energy_scan_done = done_cb;
if (nrf_802154_energy_detection(duration * 1000) == false) {
nrf5_data.energy_scan_done = NULL;
err = -EPERM;
}
} else {
err = -EALREADY;
}
return err;
}
static int nrf5_set_pan_id(const struct device *dev, uint16_t pan_id)
{
uint8_t pan_id_le[2];
ARG_UNUSED(dev);
sys_put_le16(pan_id, pan_id_le);
nrf_802154_pan_id_set(pan_id_le);
LOG_DBG("0x%x", pan_id);
return 0;
}
static int nrf5_set_short_addr(const struct device *dev, uint16_t short_addr)
{
uint8_t short_addr_le[2];
ARG_UNUSED(dev);
sys_put_le16(short_addr, short_addr_le);
nrf_802154_short_address_set(short_addr_le);
LOG_DBG("0x%x", short_addr);
return 0;
}
static int nrf5_set_ieee_addr(const struct device *dev,
const uint8_t *ieee_addr)
{
ARG_UNUSED(dev);
LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
nrf_802154_extended_address_set(ieee_addr);
return 0;
}
static int nrf5_filter(const struct device *dev, bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return nrf5_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return nrf5_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return nrf5_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int nrf5_set_txpower(const struct device *dev, int16_t dbm)
{
ARG_UNUSED(dev);
LOG_DBG("%d", dbm);
nrf_802154_tx_power_set(dbm);
return 0;
}
static int handle_ack(struct nrf5_802154_data *nrf5_radio)
{
uint8_t ack_len;
struct net_pkt *ack_pkt;
int err = 0;
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) {
ack_len = nrf5_radio->ack_frame.psdu[0];
} else {
ack_len = nrf5_radio->ack_frame.psdu[0] - NRF5_FCS_LENGTH;
}
ack_pkt = net_pkt_alloc_with_buffer(nrf5_radio->iface, ack_len,
AF_UNSPEC, 0, K_NO_WAIT);
if (!ack_pkt) {
LOG_ERR("No free packet available.");
err = -ENOMEM;
goto free_nrf_ack;
}
/* Upper layers expect the frame to start at the MAC header, skip the
* PHY header (1 byte).
*/
if (net_pkt_write(ack_pkt, nrf5_radio->ack_frame.psdu + 1,
ack_len) < 0) {
LOG_ERR("Failed to write to a packet.");
err = -ENOMEM;
goto free_net_ack;
}
net_pkt_set_ieee802154_lqi(ack_pkt, nrf5_radio->ack_frame.lqi);
net_pkt_set_ieee802154_rssi(ack_pkt, nrf5_radio->ack_frame.rssi);
#if defined(CONFIG_NET_PKT_TIMESTAMP)
struct net_ptp_time timestamp = {
.second = nrf5_radio->ack_frame.time / USEC_PER_SEC,
.nanosecond = (nrf5_radio->ack_frame.time % USEC_PER_SEC) * NSEC_PER_USEC
};
net_pkt_set_timestamp(ack_pkt, &timestamp);
#endif
net_pkt_cursor_init(ack_pkt);
if (ieee802154_radio_handle_ack(nrf5_radio->iface, ack_pkt) != NET_OK) {
LOG_INF("ACK packet not handled - releasing.");
}
free_net_ack:
net_pkt_unref(ack_pkt);
free_nrf_ack:
nrf_802154_buffer_free_raw(nrf5_radio->ack_frame.psdu);
nrf5_radio->ack_frame.psdu = NULL;
return err;
}
static void nrf5_tx_started(const struct device *dev,
struct net_pkt *pkt,
struct net_buf *frag)
{
ARG_UNUSED(pkt);
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_TX_STARTED,
(void *)frag);
}
}
static bool nrf5_tx_immediate(struct net_pkt *pkt, uint8_t *payload, bool cca)
{
nrf_802154_transmit_metadata_t metadata = {
.frame_props = {
.is_secured = pkt->ieee802154_frame_secured,
.dynamic_data_is_set = pkt->ieee802154_mac_hdr_rdy,
},
.cca = cca,
.tx_power = {
.use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER),
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
.power = pkt->ieee802154_txpwr,
#endif
},
};
return nrf_802154_transmit_raw(payload, &metadata);
}
#if NRF_802154_CSMA_CA_ENABLED
static bool nrf5_tx_csma_ca(struct net_pkt *pkt, uint8_t *payload)
{
nrf_802154_transmit_csma_ca_metadata_t metadata = {
.frame_props = {
.is_secured = pkt->ieee802154_frame_secured,
.dynamic_data_is_set = pkt->ieee802154_mac_hdr_rdy,
},
.tx_power = {
.use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER),
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
.power = pkt->ieee802154_txpwr,
#endif
},
};
return nrf_802154_transmit_csma_ca_raw(payload, &metadata);
}
#endif
#if IS_ENABLED(CONFIG_NET_PKT_TXTIME)
/**
* @brief Convert 32-bit target time to absolute 64-bit target time.
*/
static uint64_t target_time_convert_to_64_bits(uint32_t target_time)
{
/**
* Target time is provided as two 32-bit integers defining a moment in time
* in microsecond domain. In order to use bit-shifting instead of modulo
* division, calculations are performed in microsecond domain, not in RTC ticks.
*
* The target time can point to a moment in the future, but can be overdue
* as well. In order to determine what's the case and correctly set the
* absolute target time, it's necessary to compare the least significant
* 32 bits of the current time, 64-bit time with the provided 32-bit target
* time. Let's assume that half of the 32-bit range can be used for specifying
* target times in the future, and the other half - in the past.
*/
uint64_t now_us = nrf_802154_time_get();
uint32_t now_us_wrapped = (uint32_t)now_us;
uint32_t time_diff = target_time - now_us_wrapped;
uint64_t result = UINT64_C(0);
if (time_diff < 0x80000000) {
/**
* Target time is assumed to be in the future. Check if a 32-bit overflow
* occurs between the current time and the target time.
*/
if (now_us_wrapped > target_time) {
/**
* Add a 32-bit overflow and replace the least significant 32 bits
* with the provided target time.
*/
result = now_us + UINT32_MAX + 1;
result &= ~(uint64_t)UINT32_MAX;
result |= target_time;
} else {
/**
* Leave the most significant 32 bits and replace the least significant
* 32 bits with the provided target time.
*/
result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time;
}
} else {
/**
* Target time is assumed to be in the past. Check if a 32-bit overflow
* occurs between the target time and the current time.
*/
if (now_us_wrapped > target_time) {
/**
* Leave the most significant 32 bits and replace the least significant
* 32 bits with the provided target time.
*/
result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time;
} else {
/**
* Subtract a 32-bit overflow and replace the least significant
* 32 bits with the provided target time.
*/
result = now_us - UINT32_MAX - 1;
result &= ~(uint64_t)UINT32_MAX;
result |= target_time;
}
}
return result;
}
static bool nrf5_tx_at(struct net_pkt *pkt, uint8_t *payload, bool cca)
{
nrf_802154_transmit_at_metadata_t metadata = {
.frame_props = {
.is_secured = pkt->ieee802154_frame_secured,
.dynamic_data_is_set = pkt->ieee802154_mac_hdr_rdy,
},
.cca = cca,
.channel = nrf_802154_channel_get(),
.tx_power = {
.use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER),
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
.power = pkt->ieee802154_txpwr,
#endif
},
};
uint64_t tx_at = target_time_convert_to_64_bits(net_pkt_txtime(pkt) / NSEC_PER_USEC);
bool ret;
ret = nrf_802154_transmit_raw_at(payload,
tx_at,
&metadata);
if (nrf5_data.event_handler) {
LOG_WRN("TX_STARTED event will be triggered without delay");
}
return ret;
}
#endif /* CONFIG_NET_PKT_TXTIME */
static int nrf5_tx(const struct device *dev,
enum ieee802154_tx_mode mode,
struct net_pkt *pkt,
struct net_buf *frag)
{
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
uint8_t payload_len = frag->len;
uint8_t *payload = frag->data;
bool ret = true;
LOG_DBG("%p (%u)", payload, payload_len);
nrf5_radio->tx_psdu[0] = payload_len + NRF5_FCS_LENGTH;
memcpy(nrf5_radio->tx_psdu + 1, payload, payload_len);
/* Reset semaphore in case ACK was received after timeout */
k_sem_reset(&nrf5_radio->tx_wait);
switch (mode) {
case IEEE802154_TX_MODE_DIRECT:
case IEEE802154_TX_MODE_CCA:
ret = nrf5_tx_immediate(pkt, nrf5_radio->tx_psdu,
mode == IEEE802154_TX_MODE_CCA);
break;
#if NRF_802154_CSMA_CA_ENABLED
case IEEE802154_TX_MODE_CSMA_CA:
ret = nrf5_tx_csma_ca(pkt, nrf5_radio->tx_psdu);
break;
#endif
#if IS_ENABLED(CONFIG_NET_PKT_TXTIME)
case IEEE802154_TX_MODE_TXTIME:
case IEEE802154_TX_MODE_TXTIME_CCA:
__ASSERT_NO_MSG(pkt);
ret = nrf5_tx_at(pkt, nrf5_radio->tx_psdu,
mode == IEEE802154_TX_MODE_TXTIME_CCA);
break;
#endif /* CONFIG_NET_PKT_TXTIME */
default:
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
if (!ret) {
LOG_ERR("Cannot send frame");
return -EIO;
}
nrf5_tx_started(dev, pkt, frag);
LOG_DBG("Sending frame (ch:%d, txpower:%d)",
nrf_802154_channel_get(), nrf_802154_tx_power_get());
/* Wait for the callback from the radio driver. */
k_sem_take(&nrf5_radio->tx_wait, K_FOREVER);
LOG_DBG("Result: %d", nrf5_data.tx_result);
#if defined(CONFIG_IEEE802154_2015)
/*
* When frame encryption by the radio driver is enabled, the frame stored in
* the tx_psdu buffer is:
* 1) authenticated and encrypted in place which causes that after an unsuccessful
* TX attempt, this frame must be propagated back to the upper layer for retransmission.
* The upper layer must ensure that the exact same secured frame is used for
* retransmission
* 2) frame counters are updated in place and for keeping the link frame counter up to date,
* this information must be propagated back to the upper layer
*/
memcpy(payload, nrf5_radio->tx_psdu + 1, payload_len);
#endif
net_pkt_set_ieee802154_frame_secured(pkt, nrf5_radio->tx_frame_is_secured);
net_pkt_set_ieee802154_mac_hdr_rdy(pkt, nrf5_radio->tx_frame_mac_hdr_rdy);
switch (nrf5_radio->tx_result) {
case NRF_802154_TX_ERROR_NONE:
if (nrf5_radio->ack_frame.psdu == NULL) {
/* No ACK was requested. */
return 0;
}
/* Handle ACK packet. */
return handle_ack(nrf5_radio);
case NRF_802154_TX_ERROR_NO_MEM:
return -ENOBUFS;
case NRF_802154_TX_ERROR_BUSY_CHANNEL:
return -EBUSY;
case NRF_802154_TX_ERROR_INVALID_ACK:
case NRF_802154_TX_ERROR_NO_ACK:
return -ENOMSG;
case NRF_802154_TX_ERROR_ABORTED:
case NRF_802154_TX_ERROR_TIMESLOT_DENIED:
case NRF_802154_TX_ERROR_TIMESLOT_ENDED:
default:
return -EIO;
}
}
static uint64_t nrf5_get_time(const struct device *dev)
{
ARG_UNUSED(dev);
return nrf_802154_time_get();
}
static uint8_t nrf5_get_acc(const struct device *dev)
{
ARG_UNUSED(dev);
return CONFIG_IEEE802154_NRF5_DELAY_TRX_ACC;
}
static int nrf5_start(const struct device *dev)
{
ARG_UNUSED(dev);
if (!nrf_802154_receive()) {
LOG_ERR("Failed to enter receive state");
return -EIO;
}
LOG_DBG("nRF5 802154 radio started (channel: %d)",
nrf_802154_channel_get());
return 0;
}
static int nrf5_stop(const struct device *dev)
{
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
if (nrf_802154_sleep_if_idle() != NRF_802154_SLEEP_ERROR_NONE) {
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_SLEEP, NULL);
} else {
LOG_WRN("Transition to radio sleep cannot be handled.");
}
return 0;
}
#else
ARG_UNUSED(dev);
if (!nrf_802154_sleep()) {
LOG_ERR("Error while stopping radio");
return -EIO;
}
#endif
LOG_DBG("nRF5 802154 radio stopped");
return 0;
}
#if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT)
static void nrf5_radio_irq(void *arg)
{
ARG_UNUSED(arg);
nrf_802154_radio_irq_handler();
}
#endif
static void nrf5_irq_config(const struct device *dev)
{
ARG_UNUSED(dev);
#if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT)
IRQ_CONNECT(RADIO_IRQn, NRF_802154_IRQ_PRIORITY,
nrf5_radio_irq, NULL, 0);
irq_enable(RADIO_IRQn);
#endif
}
static int nrf5_init(const struct device *dev)
{
const struct nrf5_802154_config *nrf5_radio_cfg = NRF5_802154_CFG(dev);
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
k_fifo_init(&nrf5_radio->rx_fifo);
k_sem_init(&nrf5_radio->tx_wait, 0, 1);
k_sem_init(&nrf5_radio->cca_wait, 0, 1);
nrf_802154_init();
nrf5_get_capabilities_at_boot();
nrf5_radio_cfg->irq_config_func(dev);
k_thread_create(&nrf5_radio->rx_thread, nrf5_radio->rx_stack,
CONFIG_IEEE802154_NRF5_RX_STACK_SIZE,
nrf5_rx_thread, nrf5_radio, NULL, NULL,
K_PRIO_COOP(2), 0, K_NO_WAIT);
k_thread_name_set(&nrf5_radio->rx_thread, "nrf5_rx");
LOG_INF("nRF5 802154 radio initialized");
return 0;
}
static void nrf5_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
nrf5_get_eui64(nrf5_radio->mac);
net_if_set_link_addr(iface, nrf5_radio->mac, sizeof(nrf5_radio->mac),
NET_LINK_IEEE802154);
nrf5_radio->iface = iface;
ieee802154_init(iface);
}
#if defined(CONFIG_IEEE802154_2015)
static void nrf5_config_mac_keys(struct ieee802154_key *mac_keys)
{
static nrf_802154_key_id_t stored_key_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE];
static uint8_t stored_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE];
uint8_t i;
for (i = 0; i < NRF_802154_SECURITY_KEY_STORAGE_SIZE && stored_key_ids[i].p_key_id; i++) {
nrf_802154_security_key_remove(&stored_key_ids[i]);
stored_key_ids[i].p_key_id = NULL;
}
i = 0;
for (struct ieee802154_key *keys = mac_keys; keys->key_value
&& i < NRF_802154_SECURITY_KEY_STORAGE_SIZE; keys++, i++) {
nrf_802154_key_t key = {
.value.p_cleartext_key = keys->key_value,
.id.mode = keys->key_id_mode,
.id.p_key_id = &(keys->key_index),
.type = NRF_802154_KEY_CLEARTEXT,
.frame_counter = 0,
.use_global_frame_counter = !(keys->frame_counter_per_key),
};
__ASSERT_EVAL((void)nrf_802154_security_key_store(&key),
nrf_802154_security_error_t err = nrf_802154_security_key_store(&key),
err == NRF_802154_SECURITY_ERROR_NONE ||
err == NRF_802154_SECURITY_ERROR_ALREADY_PRESENT,
"Storing key failed, err: %d", err);
stored_ids[i] = *key.id.p_key_id;
stored_key_ids[i].mode = key.id.mode;
stored_key_ids[i].p_key_id = &stored_ids[i];
};
}
#endif /* CONFIG_IEEE802154_2015 */
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
static void nrf5_receive_at(uint32_t start, uint32_t duration, uint8_t channel, uint32_t id)
{
/*
* Workaround until OpenThread (the only CSL user in Zephyr so far) is able to schedule
* RX windows using 64-bit time.
*/
uint64_t rx_time = target_time_convert_to_64_bits(start);
nrf_802154_receive_at(rx_time, duration, channel, id);
}
static void nrf5_config_csl_period(uint16_t period)
{
nrf_802154_receive_at_cancel(DRX_SLOT_PH);
nrf_802154_receive_at_cancel(DRX_SLOT_RX);
nrf_802154_csl_writer_period_set(period);
/* A placeholder reception window is scheduled so that the radio driver is able to inject
* the proper CSL Phase in the transmitted CSL Information Elements.
*/
if (period > 0) {
nrf5_receive_at(nrf5_data.csl_rx_time, PH_DURATION, nrf_802154_channel_get(),
DRX_SLOT_PH);
}
}
static void nrf5_schedule_rx(uint8_t channel, uint32_t start, uint32_t duration)
{
nrf5_receive_at(start, duration, channel, DRX_SLOT_RX);
/* The placeholder reception window is rescheduled for the next period */
nrf_802154_receive_at_cancel(DRX_SLOT_PH);
nrf5_receive_at(nrf5_data.csl_rx_time, PH_DURATION, channel, DRX_SLOT_PH);
}
#endif /* CONFIG_IEEE802154_CSL_ENDPOINT */
static int nrf5_configure(const struct device *dev,
enum ieee802154_config_type type,
const struct ieee802154_config *config)
{
ARG_UNUSED(dev);
switch (type) {
case IEEE802154_CONFIG_AUTO_ACK_FPB:
if (config->auto_ack_fpb.enabled) {
switch (config->auto_ack_fpb.mode) {
case IEEE802154_FPB_ADDR_MATCH_THREAD:
nrf_802154_src_addr_matching_method_set(
NRF_802154_SRC_ADDR_MATCH_THREAD);
break;
case IEEE802154_FPB_ADDR_MATCH_ZIGBEE:
nrf_802154_src_addr_matching_method_set(
NRF_802154_SRC_ADDR_MATCH_ZIGBEE);
break;
default:
return -EINVAL;
}
}
nrf_802154_auto_pending_bit_set(config->auto_ack_fpb.enabled);
break;
case IEEE802154_CONFIG_ACK_FPB:
if (config->ack_fpb.enabled) {
if (!nrf_802154_pending_bit_for_addr_set(
config->ack_fpb.addr,
config->ack_fpb.extended)) {
return -ENOMEM;
}
break;
}
if (config->ack_fpb.addr != NULL) {
if (!nrf_802154_pending_bit_for_addr_clear(
config->ack_fpb.addr,
config->ack_fpb.extended)) {
return -ENOENT;
}
} else {
nrf_802154_pending_bit_for_addr_reset(
config->ack_fpb.extended);
}
break;
case IEEE802154_CONFIG_PAN_COORDINATOR:
nrf_802154_pan_coord_set(config->pan_coordinator);
break;
case IEEE802154_CONFIG_PROMISCUOUS:
nrf_802154_promiscuous_set(config->promiscuous);
break;
case IEEE802154_CONFIG_EVENT_HANDLER:
nrf5_data.event_handler = config->event_handler;
break;
#if defined(CONFIG_IEEE802154_2015)
case IEEE802154_CONFIG_MAC_KEYS:
nrf5_config_mac_keys(config->mac_keys);
break;
case IEEE802154_CONFIG_FRAME_COUNTER:
nrf_802154_security_global_frame_counter_set(config->frame_counter);
break;
#endif /* CONFIG_IEEE802154_2015 */
case IEEE802154_CONFIG_ENH_ACK_HEADER_IE: {
uint8_t short_addr_le[SHORT_ADDRESS_SIZE];
uint8_t ext_addr_le[EXTENDED_ADDRESS_SIZE];
sys_put_le16(config->ack_ie.short_addr, short_addr_le);
/**
* The extended address field passed to this function starts
* with the leftmost octet and ends with the rightmost octet.
* The IEEE 802.15.4 transmission order mandates this order to be
* reversed in a transmitted frame.
*
* The nrf_802154_ack_data_set expects extended address in transmission
* order.
*/
sys_memcpy_swap(ext_addr_le, config->ack_ie.ext_addr, EXTENDED_ADDRESS_SIZE);
if (config->ack_ie.data_len > 0) {
nrf_802154_ack_data_set(short_addr_le, false, config->ack_ie.data,
config->ack_ie.data_len, NRF_802154_ACK_DATA_IE);
nrf_802154_ack_data_set(ext_addr_le, true, config->ack_ie.data,
config->ack_ie.data_len, NRF_802154_ACK_DATA_IE);
} else {
nrf_802154_ack_data_clear(short_addr_le, false, NRF_802154_ACK_DATA_IE);
nrf_802154_ack_data_clear(ext_addr_le, true, NRF_802154_ACK_DATA_IE);
}
} break;
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
case IEEE802154_CONFIG_CSL_RX_TIME:
nrf5_data.csl_rx_time = config->csl_rx_time;
break;
case IEEE802154_CONFIG_RX_SLOT:
nrf5_schedule_rx(config->rx_slot.channel, config->rx_slot.start,
config->rx_slot.duration);
break;
case IEEE802154_CONFIG_CSL_PERIOD:
nrf5_config_csl_period(config->csl_period);
break;
#endif /* CONFIG_IEEE802154_CSL_ENDPOINT */
default:
return -EINVAL;
}
return 0;
}
/* nRF5 radio driver callbacks */
void nrf_802154_received_timestamp_raw(uint8_t *data, int8_t power, uint8_t lqi, uint64_t time)
{
for (uint32_t i = 0; i < ARRAY_SIZE(nrf5_data.rx_frames); i++) {
if (nrf5_data.rx_frames[i].psdu != NULL) {
continue;
}
nrf5_data.rx_frames[i].psdu = data;
nrf5_data.rx_frames[i].rssi = power;
nrf5_data.rx_frames[i].lqi = lqi;
#if IS_ENABLED(CONFIG_NET_PKT_TIMESTAMP)
nrf5_data.rx_frames[i].time = nrf_802154_mhr_timestamp_get(time, data[0]);
#endif
if (data[ACK_REQUEST_BYTE] & ACK_REQUEST_BIT) {
nrf5_data.rx_frames[i].ack_fpb = nrf5_data.last_frame_ack_fpb;
} else {
nrf5_data.rx_frames[i].ack_fpb = false;
}
nrf5_data.last_frame_ack_fpb = false;
k_fifo_put(&nrf5_data.rx_fifo, &nrf5_data.rx_frames[i]);
return;
}
__ASSERT(false, "Not enough rx frames allocated for 15.4 driver");
}
void nrf_802154_receive_failed(nrf_802154_rx_error_t error, uint32_t id)
{
const struct device *dev = net_if_get_device(nrf5_data.iface);
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
if ((id == DRX_SLOT_PH) || (id == DRX_SLOT_RX)) {
__ASSERT_NO_MSG(nrf5_data.event_handler);
nrf5_data.event_handler(dev, IEEE802154_EVENT_SLEEP, NULL);
if (error == NRF_802154_RX_ERROR_DELAYED_TIMEOUT) {
return;
}
}
#else
ARG_UNUSED(id);
#endif
enum ieee802154_rx_fail_reason reason;
switch (error) {
case NRF_802154_RX_ERROR_INVALID_FRAME:
case NRF_802154_RX_ERROR_DELAYED_TIMEOUT:
reason = IEEE802154_RX_FAIL_NOT_RECEIVED;
break;
case NRF_802154_RX_ERROR_INVALID_FCS:
reason = IEEE802154_RX_FAIL_INVALID_FCS;
break;
case NRF_802154_RX_ERROR_INVALID_DEST_ADDR:
reason = IEEE802154_RX_FAIL_ADDR_FILTERED;
break;
default:
reason = IEEE802154_RX_FAIL_OTHER;
break;
}
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_LOG_RX_FAILURES)) {
LOG_INF("Rx failed, error = %d", error);
}
nrf5_data.last_frame_ack_fpb = false;
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_FAILED, (void *)&reason);
}
}
void nrf_802154_tx_ack_started(const uint8_t *data)
{
nrf5_data.last_frame_ack_fpb =
data[FRAME_PENDING_BYTE] & FRAME_PENDING_BIT;
}
void nrf_802154_transmitted_raw(uint8_t *frame,
const nrf_802154_transmit_done_metadata_t *metadata)
{
ARG_UNUSED(frame);
nrf5_data.tx_result = NRF_802154_TX_ERROR_NONE;
nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured;
nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set;
nrf5_data.ack_frame.psdu = metadata->data.transmitted.p_ack;
if (nrf5_data.ack_frame.psdu) {
nrf5_data.ack_frame.rssi = metadata->data.transmitted.power;
nrf5_data.ack_frame.lqi = metadata->data.transmitted.lqi;
#if IS_ENABLED(CONFIG_NET_PKT_TIMESTAMP)
nrf5_data.ack_frame.time =
nrf_802154_mhr_timestamp_get(
metadata->data.transmitted.time, nrf5_data.ack_frame.psdu[0]);
#endif
}
k_sem_give(&nrf5_data.tx_wait);
}
void nrf_802154_transmit_failed(uint8_t *frame,
nrf_802154_tx_error_t error,
const nrf_802154_transmit_done_metadata_t *metadata)
{
ARG_UNUSED(frame);
nrf5_data.tx_result = error;
nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured;
nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set;
k_sem_give(&nrf5_data.tx_wait);
}
void nrf_802154_cca_done(bool channel_free)
{
nrf5_data.channel_free = channel_free;
k_sem_give(&nrf5_data.cca_wait);
}
void nrf_802154_cca_failed(nrf_802154_cca_error_t error)
{
ARG_UNUSED(error);
nrf5_data.channel_free = false;
k_sem_give(&nrf5_data.cca_wait);
}
void nrf_802154_energy_detected(uint8_t result)
{
if (nrf5_data.energy_scan_done != NULL) {
int16_t dbm;
energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;
nrf5_data.energy_scan_done = NULL;
dbm = nrf_802154_dbm_from_energy_level_calculate(result);
callback(net_if_get_device(nrf5_data.iface), dbm);
}
}
void nrf_802154_energy_detection_failed(nrf_802154_ed_error_t error)
{
if (nrf5_data.energy_scan_done != NULL) {
energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;
nrf5_data.energy_scan_done = NULL;
callback(net_if_get_device(nrf5_data.iface), SHRT_MAX);
}
}
#if defined(CONFIG_NRF_802154_SER_HOST)
void nrf_802154_serialization_error(const nrf_802154_ser_err_data_t *err)
{
__ASSERT(false, "802.15.4 serialization error: %d", err->reason);
}
#endif
static const struct nrf5_802154_config nrf5_radio_cfg = {
.irq_config_func = nrf5_irq_config,
};
static struct ieee802154_radio_api nrf5_radio_api = {
.iface_api.init = nrf5_iface_init,
.get_capabilities = nrf5_get_capabilities,
.cca = nrf5_cca,
.set_channel = nrf5_set_channel,
.filter = nrf5_filter,
.set_txpower = nrf5_set_txpower,
.start = nrf5_start,
.stop = nrf5_stop,
.tx = nrf5_tx,
.ed_scan = nrf5_energy_scan_start,
.get_time = nrf5_get_time,
.get_sch_acc = nrf5_get_acc,
.configure = nrf5_configure,
};
#if defined(CONFIG_NET_L2_IEEE802154)
#define L2 IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2)
#define MTU 125
#elif defined(CONFIG_NET_L2_OPENTHREAD)
#define L2 OPENTHREAD_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2)
#define MTU 1280
#elif defined(CONFIG_NET_L2_CUSTOM_IEEE802154)
#define L2 CUSTOM_IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(CUSTOM_IEEE802154_L2)
#define MTU CONFIG_NET_L2_CUSTOM_IEEE802154_MTU
#endif
#if defined(CONFIG_NET_L2_PHY_IEEE802154)
NET_DEVICE_INIT(nrf5_154_radio, CONFIG_IEEE802154_NRF5_DRV_NAME,
nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg,
CONFIG_IEEE802154_NRF5_INIT_PRIO,
&nrf5_radio_api, L2,
L2_CTX_TYPE, MTU);
#else
DEVICE_DEFINE(nrf5_154_radio, CONFIG_IEEE802154_NRF5_DRV_NAME,
nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg,
POST_KERNEL, CONFIG_IEEE802154_NRF5_INIT_PRIO,
&nrf5_radio_api);
#endif