zephyr/lib/posix/pthread_mutex.c
Chris Friedt 0697c7b3fe posix: headers: harmonize remaining types with newlib
The remaining types that needed to be harmonized between
Newlib and Zephyr's POSIX definitions are:

* `struct sched_param`
  - don't re-define if using minimal libc
* `pthread_attr_t`
  - convert to `struct pthread_attr`
  - define type if using minimal libc
  - assert acceptible object size
* `pthread_mutexattr_t`
  - convert to `struct pthread_mutexattr`
  - define type if using minimal libc
  - assert acceptible object size
* `pthred_condattr_t`
  - convert to `struct pthread_condattr`
  - define type if using minimal libc
  - assert acceptible object size
* `pthread_once_t`
  - adopt newlib definition
  - define type if using minimal libc
Signed-off-by: Chris Friedt <cfriedt@meta.com>
2023-01-10 09:02:21 +09:00

330 lines
6.7 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/wait_q.h>
#include <zephyr/posix/pthread.h>
#include <zephyr/sys/bitarray.h>
#include "posix_internal.h"
struct k_spinlock z_pthread_spinlock;
int64_t timespec_to_timeoutms(const struct timespec *abstime);
#define MUTEX_MAX_REC_LOCK 32767
/*
* Default mutex attrs.
*/
static const struct pthread_mutexattr def_attr = {
.type = PTHREAD_MUTEX_DEFAULT,
};
static struct posix_mutex posix_mutex_pool[CONFIG_MAX_PTHREAD_MUTEX_COUNT];
SYS_BITARRAY_DEFINE_STATIC(posix_mutex_bitarray, CONFIG_MAX_PTHREAD_MUTEX_COUNT);
/*
* We reserve the MSB to mark a pthread_mutex_t as initialized (from the
* perspective of the application). With a linear space, this means that
* the theoretical pthread_mutex_t range is [0,2147483647].
*/
BUILD_ASSERT(CONFIG_MAX_PTHREAD_MUTEX_COUNT < PTHREAD_OBJ_MASK_INIT,
"CONFIG_MAX_PTHREAD_MUTEX_COUNT is too high");
static inline size_t posix_mutex_to_offset(struct posix_mutex *m)
{
return m - posix_mutex_pool;
}
static inline size_t to_posix_mutex_idx(pthread_mutex_t mut)
{
return mark_pthread_obj_uninitialized(mut);
}
struct posix_mutex *get_posix_mutex(pthread_mutex_t mu)
{
int actually_initialized;
size_t bit = to_posix_mutex_idx(mu);
/* if the provided mutex does not claim to be initialized, its invalid */
if (!is_pthread_obj_initialized(mu)) {
return NULL;
}
/* Mask off the MSB to get the actual bit index */
if (sys_bitarray_test_bit(&posix_mutex_bitarray, bit, &actually_initialized) < 0) {
return NULL;
}
if (actually_initialized == 0) {
/* The mutex claims to be initialized but is actually not */
return NULL;
}
return &posix_mutex_pool[bit];
}
struct posix_mutex *to_posix_mutex(pthread_mutex_t *mu)
{
size_t bit;
struct posix_mutex *m;
if (*mu != PTHREAD_MUTEX_INITIALIZER) {
return get_posix_mutex(*mu);
}
/* Try and automatically associate a posix_mutex */
if (sys_bitarray_alloc(&posix_mutex_bitarray, 1, &bit) < 0) {
/* No mutexes left to allocate */
return NULL;
}
/* Record the associated posix_mutex in mu and mark as initialized */
*mu = mark_pthread_obj_initialized(bit);
/* Initialize the posix_mutex */
m = &posix_mutex_pool[bit];
m->owner = NULL;
m->lock_count = 0U;
z_waitq_init(&m->wait_q);
return m;
}
static int acquire_mutex(pthread_mutex_t *mu, k_timeout_t timeout)
{
int rc = 0;
k_spinlock_key_t key;
struct posix_mutex *m;
key = k_spin_lock(&z_pthread_spinlock);
m = to_posix_mutex(mu);
if (m == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
if (m->lock_count == 0U && m->owner == NULL) {
m->lock_count++;
m->owner = k_current_get();
k_spin_unlock(&z_pthread_spinlock, key);
return 0;
} else if (m->owner == k_current_get()) {
if (m->type == PTHREAD_MUTEX_RECURSIVE &&
m->lock_count < MUTEX_MAX_REC_LOCK) {
m->lock_count++;
rc = 0;
} else if (m->type == PTHREAD_MUTEX_ERRORCHECK) {
rc = EDEADLK;
} else {
rc = EINVAL;
}
k_spin_unlock(&z_pthread_spinlock, key);
return rc;
}
if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
rc = z_pend_curr(&z_pthread_spinlock, key, &m->wait_q, timeout);
if (rc != 0) {
rc = ETIMEDOUT;
}
return rc;
}
/**
* @brief Lock POSIX mutex with non-blocking call.
*
* See IEEE 1003.1
*/
int pthread_mutex_trylock(pthread_mutex_t *m)
{
return acquire_mutex(m, K_NO_WAIT);
}
/**
* @brief Lock POSIX mutex with timeout.
*
*
* See IEEE 1003.1
*/
int pthread_mutex_timedlock(pthread_mutex_t *m,
const struct timespec *abstime)
{
int32_t timeout = (int32_t)timespec_to_timeoutms(abstime);
return acquire_mutex(m, K_MSEC(timeout));
}
/**
* @brief Initialize POSIX mutex.
*
* See IEEE 1003.1
*/
int pthread_mutex_init(pthread_mutex_t *mu, const pthread_mutexattr_t *_attr)
{
k_spinlock_key_t key;
struct posix_mutex *m;
const struct pthread_mutexattr *attr = (const struct pthread_mutexattr *)_attr;
*mu = PTHREAD_MUTEX_INITIALIZER;
key = k_spin_lock(&z_pthread_spinlock);
m = to_posix_mutex(mu);
if (m == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return ENOMEM;
}
m->type = (attr == NULL) ? def_attr.type : attr->type;
k_spin_unlock(&z_pthread_spinlock, key);
return 0;
}
/**
* @brief Lock POSIX mutex with blocking call.
*
* See IEEE 1003.1
*/
int pthread_mutex_lock(pthread_mutex_t *m)
{
return acquire_mutex(m, K_FOREVER);
}
/**
* @brief Unlock POSIX mutex.
*
* See IEEE 1003.1
*/
int pthread_mutex_unlock(pthread_mutex_t *mu)
{
k_tid_t thread;
k_spinlock_key_t key;
struct posix_mutex *m;
pthread_mutex_t mut = *mu;
key = k_spin_lock(&z_pthread_spinlock);
m = get_posix_mutex(mut);
if (m == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
if (m->owner != k_current_get()) {
k_spin_unlock(&z_pthread_spinlock, key);
return EPERM;
}
if (m->lock_count == 0U) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
m->lock_count--;
if (m->lock_count == 0U) {
thread = z_unpend_first_thread(&m->wait_q);
if (thread) {
m->owner = thread;
m->lock_count++;
arch_thread_return_value_set(thread, 0);
z_ready_thread(thread);
z_reschedule(&z_pthread_spinlock, key);
return 0;
}
m->owner = NULL;
}
k_spin_unlock(&z_pthread_spinlock, key);
return 0;
}
/**
* @brief Destroy POSIX mutex.
*
* See IEEE 1003.1
*/
int pthread_mutex_destroy(pthread_mutex_t *mu)
{
__unused int rc;
k_spinlock_key_t key;
struct posix_mutex *m;
pthread_mutex_t mut = *mu;
size_t bit = to_posix_mutex_idx(mut);
key = k_spin_lock(&z_pthread_spinlock);
m = get_posix_mutex(mut);
if (m == NULL) {
k_spin_unlock(&z_pthread_spinlock, key);
return EINVAL;
}
rc = sys_bitarray_free(&posix_mutex_bitarray, 1, bit);
__ASSERT(rc == 0, "failed to free bit %zu", bit);
k_spin_unlock(&z_pthread_spinlock, key);
return 0;
}
/**
* @brief Read protocol attribute for mutex.
*
* See IEEE 1003.1
*/
int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr,
int *protocol)
{
*protocol = PTHREAD_PRIO_NONE;
return 0;
}
/**
* @brief Read type attribute for mutex.
*
* See IEEE 1003.1
*/
int pthread_mutexattr_gettype(const pthread_mutexattr_t *_attr, int *type)
{
const struct pthread_mutexattr *attr = (const struct pthread_mutexattr *)_attr;
*type = attr->type;
return 0;
}
/**
* @brief Set type attribute for mutex.
*
* See IEEE 1003.1
*/
int pthread_mutexattr_settype(pthread_mutexattr_t *_attr, int type)
{
struct pthread_mutexattr *attr = (struct pthread_mutexattr *)_attr;
int retc = EINVAL;
if ((type == PTHREAD_MUTEX_NORMAL) ||
(type == PTHREAD_MUTEX_RECURSIVE) ||
(type == PTHREAD_MUTEX_ERRORCHECK)) {
attr->type = type;
retc = 0;
}
return retc;
}