6df8efe354
Integrates object cores into the following kernel structures sys_mem_blocks, k_mem_slab _cpu, z_kernel k_thread, k_timer k_condvar, k_event, k_mutex, k_sem k_mbox, k_msgq, k_pipe, k_fifo, k_lifo, k_stack Signed-off-by: Peter Mitsis <peter.mitsis@intel.com>
833 lines
20 KiB
C
833 lines
20 KiB
C
/*
|
|
* Copyright (c) 2016 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* @brief Pipes
|
|
*/
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/kernel_structs.h>
|
|
|
|
#include <zephyr/toolchain.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/syscall_handler.h>
|
|
#include <kernel_internal.h>
|
|
#include <zephyr/sys/check.h>
|
|
|
|
struct waitq_walk_data {
|
|
sys_dlist_t *list;
|
|
size_t bytes_requested;
|
|
size_t bytes_available;
|
|
};
|
|
|
|
static int pipe_get_internal(k_spinlock_key_t key, struct k_pipe *pipe,
|
|
void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer,
|
|
k_timeout_t timeout);
|
|
#ifdef CONFIG_OBJ_CORE_PIPE
|
|
static struct k_obj_type obj_type_pipe;
|
|
#endif
|
|
|
|
|
|
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
|
|
{
|
|
pipe->buffer = buffer;
|
|
pipe->size = size;
|
|
pipe->bytes_used = 0U;
|
|
pipe->read_index = 0U;
|
|
pipe->write_index = 0U;
|
|
pipe->lock = (struct k_spinlock){};
|
|
z_waitq_init(&pipe->wait_q.writers);
|
|
z_waitq_init(&pipe->wait_q.readers);
|
|
SYS_PORT_TRACING_OBJ_INIT(k_pipe, pipe);
|
|
|
|
pipe->flags = 0;
|
|
|
|
#if defined(CONFIG_POLL)
|
|
sys_dlist_init(&pipe->poll_events);
|
|
#endif
|
|
z_object_init(pipe);
|
|
|
|
#ifdef CONFIG_OBJ_CORE_PIPE
|
|
k_obj_core_init_and_link(K_OBJ_CORE(pipe), &obj_type_pipe);
|
|
#endif
|
|
}
|
|
|
|
int z_impl_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
|
|
{
|
|
void *buffer;
|
|
int ret;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, alloc_init, pipe);
|
|
|
|
if (size != 0U) {
|
|
buffer = z_thread_malloc(size);
|
|
if (buffer != NULL) {
|
|
k_pipe_init(pipe, buffer, size);
|
|
pipe->flags = K_PIPE_FLAG_ALLOC;
|
|
ret = 0;
|
|
} else {
|
|
ret = -ENOMEM;
|
|
}
|
|
} else {
|
|
k_pipe_init(pipe, NULL, 0U);
|
|
ret = 0;
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, alloc_init, pipe, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(pipe, K_OBJ_PIPE));
|
|
|
|
return z_impl_k_pipe_alloc_init(pipe, size);
|
|
}
|
|
#include <syscalls/k_pipe_alloc_init_mrsh.c>
|
|
#endif
|
|
|
|
static inline void handle_poll_events(struct k_pipe *pipe)
|
|
{
|
|
#ifdef CONFIG_POLL
|
|
z_handle_obj_poll_events(&pipe->poll_events, K_POLL_STATE_PIPE_DATA_AVAILABLE);
|
|
#else
|
|
ARG_UNUSED(pipe);
|
|
#endif
|
|
}
|
|
|
|
void z_impl_k_pipe_flush(struct k_pipe *pipe)
|
|
{
|
|
size_t bytes_read;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, flush, pipe);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
(void) pipe_get_internal(key, pipe, NULL, (size_t) -1, &bytes_read, 0U,
|
|
K_NO_WAIT);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, flush, pipe);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
void z_vrfy_k_pipe_flush(struct k_pipe *pipe)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
|
|
z_impl_k_pipe_flush(pipe);
|
|
}
|
|
#include <syscalls/k_pipe_flush_mrsh.c>
|
|
#endif
|
|
|
|
void z_impl_k_pipe_buffer_flush(struct k_pipe *pipe)
|
|
{
|
|
size_t bytes_read;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, buffer_flush, pipe);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
if (pipe->buffer != NULL) {
|
|
(void) pipe_get_internal(key, pipe, NULL, pipe->size,
|
|
&bytes_read, 0U, K_NO_WAIT);
|
|
} else {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, buffer_flush, pipe);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
void z_vrfy_k_pipe_buffer_flush(struct k_pipe *pipe)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
|
|
z_impl_k_pipe_buffer_flush(pipe);
|
|
}
|
|
#endif
|
|
|
|
int k_pipe_cleanup(struct k_pipe *pipe)
|
|
{
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, cleanup, pipe);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
CHECKIF(z_waitq_head(&pipe->wait_q.readers) != NULL ||
|
|
z_waitq_head(&pipe->wait_q.writers) != NULL) {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, -EAGAIN);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if ((pipe->flags & K_PIPE_FLAG_ALLOC) != 0U) {
|
|
k_free(pipe->buffer);
|
|
pipe->buffer = NULL;
|
|
|
|
/*
|
|
* Freeing the buffer changes the pipe into a bufferless
|
|
* pipe. Reset the pipe's counters to prevent malfunction.
|
|
*/
|
|
|
|
pipe->size = 0U;
|
|
pipe->bytes_used = 0U;
|
|
pipe->read_index = 0U;
|
|
pipe->write_index = 0U;
|
|
pipe->flags &= ~K_PIPE_FLAG_ALLOC;
|
|
}
|
|
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, cleanup, pipe, 0U);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Copy bytes from @a src to @a dest
|
|
*
|
|
* @return Number of bytes copied
|
|
*/
|
|
static size_t pipe_xfer(unsigned char *dest, size_t dest_size,
|
|
const unsigned char *src, size_t src_size)
|
|
{
|
|
size_t num_bytes = MIN(dest_size, src_size);
|
|
|
|
if (dest == NULL) {
|
|
/* Data is being flushed. Pretend the data was copied. */
|
|
return num_bytes;
|
|
}
|
|
|
|
(void) memcpy(dest, src, num_bytes);
|
|
|
|
return num_bytes;
|
|
}
|
|
|
|
/**
|
|
* @brief Callback routine used to populate wait list
|
|
*
|
|
* @return 1 to stop further walking; 0 to continue walking
|
|
*/
|
|
static int pipe_walk_op(struct k_thread *thread, void *data)
|
|
{
|
|
struct waitq_walk_data *walk_data = data;
|
|
struct _pipe_desc *desc = (struct _pipe_desc *)thread->base.swap_data;
|
|
|
|
sys_dlist_append(walk_data->list, &desc->node);
|
|
|
|
walk_data->bytes_available += desc->bytes_to_xfer;
|
|
|
|
if (walk_data->bytes_available >= walk_data->bytes_requested) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Popluate pipe descriptors for copying to/from waiters' buffers
|
|
*
|
|
* This routine cycles through the waiters on the wait queue and creates
|
|
* a list of threads that will have data directly copied to / read from
|
|
* their buffers. This list helps us avoid double copying later.
|
|
*
|
|
* @return # of bytes available for direct copying
|
|
*/
|
|
static size_t pipe_waiter_list_populate(sys_dlist_t *list,
|
|
_wait_q_t *wait_q,
|
|
size_t bytes_to_xfer)
|
|
{
|
|
struct waitq_walk_data walk_data;
|
|
|
|
walk_data.list = list;
|
|
walk_data.bytes_requested = bytes_to_xfer;
|
|
walk_data.bytes_available = 0;
|
|
|
|
(void) z_sched_waitq_walk(wait_q, pipe_walk_op, &walk_data);
|
|
|
|
return walk_data.bytes_available;
|
|
}
|
|
|
|
/**
|
|
* @brief Populate pipe descriptors for copying to/from pipe buffer
|
|
*
|
|
* This routine is only called if the pipe buffer is not empty (when reading),
|
|
* or if not full (when writing).
|
|
*/
|
|
static size_t pipe_buffer_list_populate(sys_dlist_t *list,
|
|
struct _pipe_desc *desc,
|
|
unsigned char *buffer,
|
|
size_t size,
|
|
size_t start,
|
|
size_t end)
|
|
{
|
|
sys_dlist_append(list, &desc[0].node);
|
|
|
|
desc[0].thread = NULL;
|
|
desc[0].buffer = &buffer[start];
|
|
|
|
if (start < end) {
|
|
desc[0].bytes_to_xfer = end - start;
|
|
return end - start;
|
|
}
|
|
|
|
desc[0].bytes_to_xfer = size - start;
|
|
|
|
desc[1].thread = NULL;
|
|
desc[1].buffer = &buffer[0];
|
|
desc[1].bytes_to_xfer = end;
|
|
|
|
sys_dlist_append(list, &desc[1].node);
|
|
|
|
return size - start + end;
|
|
}
|
|
|
|
/**
|
|
* @brief Determine the correct return code
|
|
*
|
|
* Bytes Xferred No Wait Wait
|
|
* >= Minimum 0 0
|
|
* < Minimum -EIO* -EAGAIN
|
|
*
|
|
* * The "-EIO No Wait" case was already checked after the list of pipe
|
|
* descriptors was created.
|
|
*
|
|
* @return See table above
|
|
*/
|
|
static int pipe_return_code(size_t min_xfer, size_t bytes_remaining,
|
|
size_t bytes_requested)
|
|
{
|
|
if (bytes_requested - bytes_remaining >= min_xfer) {
|
|
/*
|
|
* At least the minimum number of requested
|
|
* bytes have been transferred.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* @brief Copy data from source(s) to destination(s)
|
|
*/
|
|
|
|
static size_t pipe_write(struct k_pipe *pipe, sys_dlist_t *src_list,
|
|
sys_dlist_t *dest_list, bool *reschedule)
|
|
{
|
|
struct _pipe_desc *src;
|
|
struct _pipe_desc *dest;
|
|
size_t bytes_copied;
|
|
size_t num_bytes_written = 0U;
|
|
|
|
src = (struct _pipe_desc *)sys_dlist_get(src_list);
|
|
dest = (struct _pipe_desc *)sys_dlist_get(dest_list);
|
|
|
|
while ((src != NULL) && (dest != NULL)) {
|
|
bytes_copied = pipe_xfer(dest->buffer, dest->bytes_to_xfer,
|
|
src->buffer, src->bytes_to_xfer);
|
|
|
|
num_bytes_written += bytes_copied;
|
|
|
|
dest->buffer += bytes_copied;
|
|
dest->bytes_to_xfer -= bytes_copied;
|
|
|
|
src->buffer += bytes_copied;
|
|
src->bytes_to_xfer -= bytes_copied;
|
|
|
|
if (dest->thread == NULL) {
|
|
|
|
/* Writing to the pipe buffer. Update details. */
|
|
|
|
pipe->bytes_used += bytes_copied;
|
|
pipe->write_index += bytes_copied;
|
|
if (pipe->write_index >= pipe->size) {
|
|
pipe->write_index -= pipe->size;
|
|
}
|
|
} else if (dest->bytes_to_xfer == 0U) {
|
|
|
|
/* The thread's read request has been satisfied. */
|
|
|
|
z_unpend_thread(dest->thread);
|
|
z_ready_thread(dest->thread);
|
|
|
|
*reschedule = true;
|
|
}
|
|
|
|
if (src->bytes_to_xfer == 0U) {
|
|
src = (struct _pipe_desc *)sys_dlist_get(src_list);
|
|
}
|
|
|
|
if (dest->bytes_to_xfer == 0U) {
|
|
dest = (struct _pipe_desc *)sys_dlist_get(dest_list);
|
|
}
|
|
}
|
|
|
|
return num_bytes_written;
|
|
}
|
|
|
|
int z_impl_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer,
|
|
k_timeout_t timeout)
|
|
{
|
|
struct _pipe_desc pipe_desc[2];
|
|
struct _pipe_desc isr_desc;
|
|
struct _pipe_desc *src_desc;
|
|
sys_dlist_t dest_list;
|
|
sys_dlist_t src_list;
|
|
size_t bytes_can_write;
|
|
bool reschedule_needed = false;
|
|
|
|
__ASSERT(((arch_is_in_isr() == false) ||
|
|
K_TIMEOUT_EQ(timeout, K_NO_WAIT)), "");
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, put, pipe, timeout);
|
|
|
|
CHECKIF((min_xfer > bytes_to_write) || bytes_written == NULL) {
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout,
|
|
-EINVAL);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
sys_dlist_init(&src_list);
|
|
sys_dlist_init(&dest_list);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
/*
|
|
* First, write to any waiting readers, if any exist.
|
|
* Second, write to the pipe buffer, if it exists.
|
|
*/
|
|
|
|
bytes_can_write = pipe_waiter_list_populate(&dest_list,
|
|
&pipe->wait_q.readers,
|
|
bytes_to_write);
|
|
|
|
if (pipe->bytes_used != pipe->size) {
|
|
bytes_can_write += pipe_buffer_list_populate(&dest_list,
|
|
pipe_desc,
|
|
pipe->buffer,
|
|
pipe->size,
|
|
pipe->write_index,
|
|
pipe->read_index);
|
|
}
|
|
|
|
if ((bytes_can_write < min_xfer) &&
|
|
(K_TIMEOUT_EQ(timeout, K_NO_WAIT))) {
|
|
|
|
/* The request can not be fulfilled. */
|
|
|
|
k_spin_unlock(&pipe->lock, key);
|
|
*bytes_written = 0U;
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe,
|
|
timeout, -EIO);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Do not use the pipe descriptor stored within k_thread if
|
|
* invoked from within an ISR as that is not safe to do.
|
|
*/
|
|
|
|
src_desc = k_is_in_isr() ? &isr_desc : &_current->pipe_desc;
|
|
|
|
src_desc->buffer = data;
|
|
src_desc->bytes_to_xfer = bytes_to_write;
|
|
src_desc->thread = _current;
|
|
sys_dlist_append(&src_list, &src_desc->node);
|
|
|
|
*bytes_written = pipe_write(pipe, &src_list,
|
|
&dest_list, &reschedule_needed);
|
|
|
|
/*
|
|
* Only handle poll events if the pipe has had some bytes written and
|
|
* there are bytes remaining after any pending readers have read from it
|
|
*/
|
|
|
|
if ((pipe->bytes_used != 0U) && (*bytes_written != 0U)) {
|
|
handle_poll_events(pipe);
|
|
}
|
|
|
|
/*
|
|
* The immediate success conditions below are backwards
|
|
* compatible with an earlier pipe implementation.
|
|
*/
|
|
|
|
if ((*bytes_written == bytes_to_write) ||
|
|
(K_TIMEOUT_EQ(timeout, K_NO_WAIT)) ||
|
|
((*bytes_written >= min_xfer) && (min_xfer > 0U))) {
|
|
|
|
/* The minimum amount of data has been copied */
|
|
|
|
if (reschedule_needed) {
|
|
z_reschedule(&pipe->lock, key);
|
|
} else {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
}
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The minimum amount of data has not been copied. Block. */
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, put, pipe, timeout);
|
|
|
|
_current->base.swap_data = src_desc;
|
|
|
|
z_sched_wait(&pipe->lock, key, &pipe->wait_q.writers, timeout, NULL);
|
|
|
|
/*
|
|
* On SMP systems, threads in the processing list may timeout before
|
|
* the data has finished copying. The following spin lock/unlock pair
|
|
* prevents those threads from executing further until the data copying
|
|
* is complete.
|
|
*/
|
|
|
|
key = k_spin_lock(&pipe->lock);
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
*bytes_written = bytes_to_write - src_desc->bytes_to_xfer;
|
|
|
|
int ret = pipe_return_code(min_xfer, src_desc->bytes_to_xfer,
|
|
bytes_to_write);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, put, pipe, timeout, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy_k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write,
|
|
size_t *bytes_written, size_t min_xfer,
|
|
k_timeout_t timeout)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_written, sizeof(*bytes_written)));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_READ((void *)data, bytes_to_write));
|
|
|
|
return z_impl_k_pipe_put((struct k_pipe *)pipe, (void *)data,
|
|
bytes_to_write, bytes_written, min_xfer,
|
|
timeout);
|
|
}
|
|
#include <syscalls/k_pipe_put_mrsh.c>
|
|
#endif
|
|
|
|
static int pipe_get_internal(k_spinlock_key_t key, struct k_pipe *pipe,
|
|
void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer,
|
|
k_timeout_t timeout)
|
|
{
|
|
sys_dlist_t src_list;
|
|
struct _pipe_desc pipe_desc[2];
|
|
struct _pipe_desc isr_desc;
|
|
struct _pipe_desc *dest_desc;
|
|
struct _pipe_desc *src_desc;
|
|
size_t num_bytes_read = 0U;
|
|
size_t bytes_copied;
|
|
size_t bytes_can_read = 0U;
|
|
bool reschedule_needed = false;
|
|
|
|
/*
|
|
* Data copying takes place in the following order.
|
|
* 1. Copy data from the pipe buffer to the receive buffer.
|
|
* 2. Copy data from the waiting writer(s) to the receive buffer.
|
|
* 3. Refill the pipe buffer from the waiting writer(s).
|
|
*/
|
|
|
|
sys_dlist_init(&src_list);
|
|
|
|
if (pipe->bytes_used != 0) {
|
|
bytes_can_read = pipe_buffer_list_populate(&src_list,
|
|
pipe_desc,
|
|
pipe->buffer,
|
|
pipe->size,
|
|
pipe->read_index,
|
|
pipe->write_index);
|
|
}
|
|
|
|
bytes_can_read += pipe_waiter_list_populate(&src_list,
|
|
&pipe->wait_q.writers,
|
|
bytes_to_read);
|
|
|
|
if ((bytes_can_read < min_xfer) &&
|
|
(K_TIMEOUT_EQ(timeout, K_NO_WAIT))) {
|
|
|
|
/* The request can not be fulfilled. */
|
|
|
|
k_spin_unlock(&pipe->lock, key);
|
|
*bytes_read = 0;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Do not use the pipe descriptor stored within k_thread if
|
|
* invoked from within an ISR as that is not safe to do.
|
|
*/
|
|
|
|
dest_desc = k_is_in_isr() ? &isr_desc : &_current->pipe_desc;
|
|
|
|
dest_desc->buffer = data;
|
|
dest_desc->bytes_to_xfer = bytes_to_read;
|
|
dest_desc->thread = _current;
|
|
|
|
src_desc = (struct _pipe_desc *)sys_dlist_get(&src_list);
|
|
while (src_desc != NULL) {
|
|
bytes_copied = pipe_xfer(dest_desc->buffer,
|
|
dest_desc->bytes_to_xfer,
|
|
src_desc->buffer,
|
|
src_desc->bytes_to_xfer);
|
|
|
|
num_bytes_read += bytes_copied;
|
|
|
|
src_desc->buffer += bytes_copied;
|
|
src_desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
if (dest_desc->buffer != NULL) {
|
|
dest_desc->buffer += bytes_copied;
|
|
}
|
|
dest_desc->bytes_to_xfer -= bytes_copied;
|
|
|
|
if (src_desc->thread == NULL) {
|
|
|
|
/* Reading from the pipe buffer. Update details. */
|
|
|
|
pipe->bytes_used -= bytes_copied;
|
|
pipe->read_index += bytes_copied;
|
|
if (pipe->read_index >= pipe->size) {
|
|
pipe->read_index -= pipe->size;
|
|
}
|
|
} else if (src_desc->bytes_to_xfer == 0U) {
|
|
|
|
/* The thread's write request has been satisfied. */
|
|
|
|
z_unpend_thread(src_desc->thread);
|
|
z_ready_thread(src_desc->thread);
|
|
|
|
reschedule_needed = true;
|
|
}
|
|
src_desc = (struct _pipe_desc *)sys_dlist_get(&src_list);
|
|
}
|
|
|
|
if (pipe->bytes_used != pipe->size) {
|
|
sys_dlist_t pipe_list;
|
|
|
|
/*
|
|
* The pipe is not full. If there are any waiting writers,
|
|
* refill the pipe.
|
|
*/
|
|
|
|
sys_dlist_init(&src_list);
|
|
sys_dlist_init(&pipe_list);
|
|
|
|
(void) pipe_waiter_list_populate(&src_list,
|
|
&pipe->wait_q.writers,
|
|
pipe->size - pipe->bytes_used);
|
|
|
|
(void) pipe_buffer_list_populate(&pipe_list, pipe_desc,
|
|
pipe->buffer, pipe->size,
|
|
pipe->write_index,
|
|
pipe->read_index);
|
|
|
|
(void) pipe_write(pipe, &src_list,
|
|
&pipe_list, &reschedule_needed);
|
|
}
|
|
|
|
/*
|
|
* The immediate success conditions below are backwards
|
|
* compatible with an earlier pipe implementation.
|
|
*/
|
|
|
|
if ((num_bytes_read == bytes_to_read) ||
|
|
(K_TIMEOUT_EQ(timeout, K_NO_WAIT)) ||
|
|
((num_bytes_read >= min_xfer) && (min_xfer > 0U))) {
|
|
|
|
/* The minimum amount of data has been copied */
|
|
|
|
*bytes_read = num_bytes_read;
|
|
if (reschedule_needed) {
|
|
z_reschedule(&pipe->lock, key);
|
|
} else {
|
|
k_spin_unlock(&pipe->lock, key);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The minimum amount of data has not been copied. Block. */
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_pipe, get, pipe, timeout);
|
|
|
|
_current->base.swap_data = dest_desc;
|
|
|
|
z_sched_wait(&pipe->lock, key, &pipe->wait_q.readers, timeout, NULL);
|
|
|
|
/*
|
|
* On SMP systems, threads in the processing list may timeout before
|
|
* the data has finished copying. The following spin lock/unlock pair
|
|
* prevents those threads from executing further until the data copying
|
|
* is complete.
|
|
*/
|
|
|
|
key = k_spin_lock(&pipe->lock);
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
*bytes_read = bytes_to_read - dest_desc->bytes_to_xfer;
|
|
|
|
int ret = pipe_return_code(min_xfer, dest_desc->bytes_to_xfer,
|
|
bytes_to_read);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int z_impl_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
|
|
{
|
|
__ASSERT(((arch_is_in_isr() == false) ||
|
|
K_TIMEOUT_EQ(timeout, K_NO_WAIT)), "");
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_pipe, get, pipe, timeout);
|
|
|
|
CHECKIF((min_xfer > bytes_to_read) || bytes_read == NULL) {
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe,
|
|
timeout, -EINVAL);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&pipe->lock);
|
|
|
|
int ret = pipe_get_internal(key, pipe, data, bytes_to_read, bytes_read,
|
|
min_xfer, timeout);
|
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_pipe, get, pipe, timeout, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
int z_vrfy_k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read,
|
|
size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(bytes_read, sizeof(*bytes_read)));
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE((void *)data, bytes_to_read));
|
|
|
|
return z_impl_k_pipe_get((struct k_pipe *)pipe, (void *)data,
|
|
bytes_to_read, bytes_read, min_xfer,
|
|
timeout);
|
|
}
|
|
#include <syscalls/k_pipe_get_mrsh.c>
|
|
#endif
|
|
|
|
size_t z_impl_k_pipe_read_avail(struct k_pipe *pipe)
|
|
{
|
|
size_t res;
|
|
k_spinlock_key_t key;
|
|
|
|
/* Buffer and size are fixed. No need to spin. */
|
|
if (pipe->buffer == NULL || pipe->size == 0U) {
|
|
res = 0;
|
|
goto out;
|
|
}
|
|
|
|
key = k_spin_lock(&pipe->lock);
|
|
|
|
if (pipe->read_index == pipe->write_index) {
|
|
res = pipe->bytes_used;
|
|
} else if (pipe->read_index < pipe->write_index) {
|
|
res = pipe->write_index - pipe->read_index;
|
|
} else {
|
|
res = pipe->size - (pipe->read_index - pipe->write_index);
|
|
}
|
|
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
size_t z_vrfy_k_pipe_read_avail(struct k_pipe *pipe)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
|
|
return z_impl_k_pipe_read_avail(pipe);
|
|
}
|
|
#include <syscalls/k_pipe_read_avail_mrsh.c>
|
|
#endif
|
|
|
|
size_t z_impl_k_pipe_write_avail(struct k_pipe *pipe)
|
|
{
|
|
size_t res;
|
|
k_spinlock_key_t key;
|
|
|
|
/* Buffer and size are fixed. No need to spin. */
|
|
if (pipe->buffer == NULL || pipe->size == 0U) {
|
|
res = 0;
|
|
goto out;
|
|
}
|
|
|
|
key = k_spin_lock(&pipe->lock);
|
|
|
|
if (pipe->write_index == pipe->read_index) {
|
|
res = pipe->size - pipe->bytes_used;
|
|
} else if (pipe->write_index < pipe->read_index) {
|
|
res = pipe->read_index - pipe->write_index;
|
|
} else {
|
|
res = pipe->size - (pipe->write_index - pipe->read_index);
|
|
}
|
|
|
|
k_spin_unlock(&pipe->lock, key);
|
|
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
size_t z_vrfy_k_pipe_write_avail(struct k_pipe *pipe)
|
|
{
|
|
Z_OOPS(Z_SYSCALL_OBJ(pipe, K_OBJ_PIPE));
|
|
|
|
return z_impl_k_pipe_write_avail(pipe);
|
|
}
|
|
#include <syscalls/k_pipe_write_avail_mrsh.c>
|
|
#endif
|
|
|
|
#ifdef CONFIG_OBJ_CORE_PIPE
|
|
static int init_pipe_obj_core_list(void)
|
|
{
|
|
/* Initialize pipe object type */
|
|
|
|
z_obj_type_init(&obj_type_pipe, K_OBJ_TYPE_PIPE_ID,
|
|
offsetof(struct k_pipe, obj_core));
|
|
|
|
/* Initialize and link statically defined pipes */
|
|
|
|
STRUCT_SECTION_FOREACH(k_pipe, pipe) {
|
|
k_obj_core_init_and_link(K_OBJ_CORE(pipe), &obj_type_pipe);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_pipe_obj_core_list, PRE_KERNEL_1,
|
|
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
#endif
|