987c0e5fc1
Now that the API has been fixed up, replace the existing timeout queue with a much smaller version. The basic algorithm is unchanged: timeouts are stored in a sorted dlist with each node nolding a delta time from the previous node in the list; the announce call just walks this list pulling off the heads as needed. Advantages: * Properly spinlocked and SMP-aware. The earlier timer implementation relied on only CPU 0 doing timeout work, and on an irq_lock() being taken before entry (something that was violated in a few spots). Now any CPU can wake up for an event (or all of them) and everything works correctly. * The *_thread_timeout() API is now expressible as a clean wrapping (just one liners) around the lower-level interface based on function pointer callbacks. As a result the timeout objects no longer need to store backpointers to the thread and wait_q and have shrunk by 33%. * MUCH smaller, to the tune of hundreds of lines of code removed. * Future proof, in that all operations on the queue are now fronted by just two entry points (_add_timeout() and z_clock_announce()) which can easily be augmented with fancier data structures. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
244 lines
4.4 KiB
C
244 lines
4.4 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <timeout_q.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <sys_clock.h>
|
|
#include <spinlock.h>
|
|
#include <ksched.h>
|
|
#include <syscall_handler.h>
|
|
|
|
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
|
|
__key = k_spin_lock(lck); \
|
|
!__i.key; \
|
|
k_spin_unlock(lck, __key), __i.key = 1)
|
|
|
|
static u64_t curr_tick;
|
|
|
|
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
|
|
|
|
static struct k_spinlock timeout_lock;
|
|
|
|
static bool can_wait_forever;
|
|
|
|
/* During a call to z_clock_announce(), the "current" time is "ahead"
|
|
* of the reference used by timeout_list by this amount.
|
|
*/
|
|
static int announce_advance;
|
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
|
|
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
|
|
#endif
|
|
|
|
static struct _timeout *first(void)
|
|
{
|
|
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
|
|
|
|
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
|
|
}
|
|
|
|
static struct _timeout *next(struct _timeout *t)
|
|
{
|
|
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
|
|
|
|
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
|
|
}
|
|
|
|
static void remove(struct _timeout *t)
|
|
{
|
|
if (next(t) != NULL) {
|
|
next(t)->dticks += t->dticks;
|
|
}
|
|
|
|
sys_dlist_remove(&t->node);
|
|
t->dticks = _INACTIVE;
|
|
}
|
|
|
|
static s32_t adjust_elapsed(s32_t ticks)
|
|
{
|
|
ticks -= z_clock_elapsed();
|
|
return ticks < 0 ? 0 : ticks;
|
|
}
|
|
|
|
void _add_timeout(struct _timeout *to, _timeout_func_t fn, s32_t ticks)
|
|
{
|
|
__ASSERT(to->dticks < 0, "");
|
|
to->fn = fn;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
struct _timeout *t;
|
|
|
|
to->dticks = adjust_elapsed(ticks) + announce_advance;
|
|
for (t = first(); t != NULL; t = next(t)) {
|
|
__ASSERT(t->dticks >= 0, "");
|
|
|
|
if (t->dticks > to->dticks) {
|
|
t->dticks -= to->dticks;
|
|
sys_dlist_insert_before(&timeout_list,
|
|
&t->node, &to->node);
|
|
break;
|
|
}
|
|
to->dticks -= t->dticks;
|
|
}
|
|
|
|
if (t == NULL) {
|
|
sys_dlist_append(&timeout_list, &to->node);
|
|
}
|
|
}
|
|
|
|
z_clock_set_timeout(_get_next_timeout_expiry(), false);
|
|
}
|
|
|
|
int _abort_timeout(struct _timeout *to)
|
|
{
|
|
int ret = _INACTIVE;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
if (to->dticks != _INACTIVE) {
|
|
remove(to);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
s32_t z_timeout_remaining(struct _timeout *to)
|
|
{
|
|
s32_t ticks = 0;
|
|
|
|
if (to->dticks == _INACTIVE) {
|
|
return 0;
|
|
}
|
|
|
|
LOCKED(&timeout_lock) {
|
|
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
|
|
ticks += t->dticks;
|
|
if (to == t) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ticks;
|
|
}
|
|
|
|
void z_clock_announce(s32_t ticks)
|
|
{
|
|
struct _timeout *t = NULL;
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_time_slice(ticks);
|
|
#endif
|
|
|
|
LOCKED(&timeout_lock) {
|
|
curr_tick += ticks;
|
|
announce_advance = ticks;
|
|
}
|
|
|
|
while (true) {
|
|
LOCKED(&timeout_lock) {
|
|
t = first();
|
|
if (t != NULL) {
|
|
if (t->dticks <= announce_advance) {
|
|
announce_advance -= t->dticks;
|
|
t->dticks = 0;
|
|
remove(t);
|
|
} else {
|
|
t->dticks -= announce_advance;
|
|
t = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (t == NULL) {
|
|
break;
|
|
}
|
|
|
|
t->fn(t);
|
|
}
|
|
|
|
announce_advance = 0;
|
|
z_clock_set_timeout(_get_next_timeout_expiry(), false);
|
|
}
|
|
|
|
s32_t _get_next_timeout_expiry(void)
|
|
{
|
|
s32_t ret = 0;
|
|
int max = can_wait_forever ? K_FOREVER : INT_MAX;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
struct _timeout *to = first();
|
|
|
|
ret = to == NULL ? max : adjust_elapsed(to->dticks);
|
|
}
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
|
|
ret = _current_cpu->slice_ticks;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
int k_enable_sys_clock_always_on(void)
|
|
{
|
|
int ret = !can_wait_forever;
|
|
|
|
can_wait_forever = 0;
|
|
return ret;
|
|
}
|
|
|
|
void k_disable_sys_clock_always_on(void)
|
|
{
|
|
can_wait_forever = 1;
|
|
}
|
|
|
|
s64_t z_tick_get(void)
|
|
{
|
|
u64_t t = 0;
|
|
|
|
LOCKED(&timeout_lock) {
|
|
t = curr_tick + z_clock_elapsed();
|
|
}
|
|
return t;
|
|
}
|
|
|
|
u32_t z_tick_get_32(void)
|
|
{
|
|
/* Returning just the low word doesn't require locking as the
|
|
* API is by definition at risk of overflow
|
|
*/
|
|
return z_clock_elapsed() + (u32_t)curr_tick;
|
|
}
|
|
|
|
u32_t _impl_k_uptime_get_32(void)
|
|
{
|
|
return __ticks_to_ms(z_tick_get_32());
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_uptime_get_32)
|
|
{
|
|
return _impl_k_uptime_get_32();
|
|
}
|
|
#endif
|
|
|
|
s64_t _impl_k_uptime_get(void)
|
|
{
|
|
return __ticks_to_ms(z_tick_get());
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_uptime_get, ret_p)
|
|
{
|
|
u64_t *ret = (u64_t *)ret_p;
|
|
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret)));
|
|
*ret = _impl_k_uptime_get();
|
|
return 0;
|
|
}
|
|
#endif
|