zephyr/drivers/adc/adc_npcx.c
Wealian Liao 6d6c5e1155 drivers: npcx: Drop DRV_CONFIG/DRV_DATA usage
Stop using DRV_CONFIG/DRV_DATA macros and use dev->data and dev->config
instead.

Signed-off-by: Wealian Liao <WHLIAO@nuvoton.com>
2022-01-28 10:06:05 +01:00

382 lines
10 KiB
C

/*
* Copyright (c) 2020 Nuvoton Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_npcx_adc
#include <assert.h>
#include <drivers/adc.h>
#include <drivers/clock_control.h>
#include <kernel.h>
#include <soc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_npcx, CONFIG_ADC_LOG_LEVEL);
/* ADC speed/delay values during initialization */
#define ADC_REGULAR_DLY_VAL 0x03
#define ADC_REGULAR_ADCCNF2_VAL 0x8B07
#define ADC_REGULAR_GENDLY_VAL 0x0100
#define ADC_REGULAR_MEAST_VAL 0x0001
/* ADC channel number */
#define NPCX_ADC_CH_COUNT DT_INST_NUM_PINCTRLS_BY_IDX(0, 0)
/* ADC targeted operating frequency (2MHz) */
#define NPCX_ADC_CLK 2000000
/* ADC internal reference voltage (Unit:mV) */
#define NPCX_ADC_VREF_VOL 2816
/* ADC conversion mode */
#define NPCX_ADC_CHN_CONVERSION_MODE 0
#define NPCX_ADC_SCAN_CONVERSION_MODE 1
/* Device config */
struct adc_npcx_config {
/* adc controller base address */
uintptr_t base;
/* clock configuration */
struct npcx_clk_cfg clk_cfg;
/* pinmux configuration */
const struct npcx_alt *alts_list;
};
/* Driver data */
struct adc_npcx_data {
/* Input clock for ADC converter */
uint32_t input_clk;
/* mutex of ADC channels */
struct adc_context ctx;
/*
* Bit-mask indicating the channels to be included in each sampling
* of this sequence.
*/
uint16_t channels;
/* ADC Device pointer used in api functions */
const struct device *adc_dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
/* end pointer of buffer to ensure enough space for storing ADC data. */
uint16_t *buf_end;
};
/* Driver convenience defines */
#define HAL_INSTANCE(dev) ((struct adc_reg *)((const struct adc_npcx_config *)(dev)->config)->base)
/* ADC local functions */
static void adc_npcx_isr(void *arg)
{
const struct device *dev = arg;
const struct adc_npcx_config *config = dev->config;
struct adc_npcx_data *const data = dev->data;
struct adc_reg *const inst = HAL_INSTANCE(dev);
uint16_t status = inst->ADCSTS;
uint16_t result, channel;
/* Clear status pending bits first */
inst->ADCSTS = status;
LOG_DBG("%s: status is %04X\n", __func__, status);
/* Is end of conversion cycle event? ie. Scan conversion is done. */
if (IS_BIT_SET(status, NPCX_ADCSTS_EOCCEV)) {
/* Stop conversion for scan conversion mode */
inst->ADCCNF |= BIT(NPCX_ADCCNF_STOP);
/* Get result for each ADC selected channel */
while (data->channels) {
channel = find_lsb_set(data->channels) - 1;
result = GET_FIELD(CHNDAT(config->base, channel), NPCX_CHNDAT_CHDAT_FIELD);
/*
* Save ADC result and adc_npcx_validate_buffer_size()
* already ensures that the buffer has enough space for
* storing result.
*/
if (data->buffer < data->buf_end) {
*data->buffer++ = result;
}
data->channels &= ~BIT(channel);
}
/* Turn off ADC and inform sampling is done */
inst->ADCCNF &= ~(BIT(NPCX_ADCCNF_ADCEN));
adc_context_on_sampling_done(&data->ctx, data->adc_dev);
}
}
/*
* Validate the buffer size with adc channels mask. If it is lower than what
* we need return -ENOSPC.
*/
static int adc_npcx_validate_buffer_size(const struct device *dev,
const struct adc_sequence *sequence)
{
uint8_t channels = 0;
uint32_t mask;
size_t needed;
for (mask = BIT(NPCX_ADC_CH_COUNT - 1); mask != 0; mask >>= 1) {
if (mask & sequence->channels) {
channels++;
}
}
needed = channels * sizeof(uint16_t);
if (sequence->options) {
needed *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed) {
return -ENOSPC;
}
return 0;
}
static void adc_npcx_start_scan(const struct device *dev)
{
struct adc_npcx_data *const data = dev->data;
struct adc_reg *const inst = HAL_INSTANCE(dev);
/* Turn on ADC first */
inst->ADCCNF |= BIT(NPCX_ADCCNF_ADCEN);
/* Update selected channels in scan mode by channels mask */
inst->ADCCS = data->channels;
/* Select 'Scan' Conversion mode. */
SET_FIELD(inst->ADCCNF, NPCX_ADCCNF_ADCMD_FIELD,
NPCX_ADC_SCAN_CONVERSION_MODE);
/* Select 'One-Shot' Repetitive mode */
inst->ADCCNF |= BIT(NPCX_ADCCNF_INTECEN);
/* Start conversion */
inst->ADCCNF |= BIT(NPCX_ADCCNF_START);
LOG_DBG("Start ADC scan conversion and ADCCNF,ADCCS are (%04X,%04X)\n",
inst->ADCCNF, inst->ADCCS);
}
static int adc_npcx_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_npcx_data *const data = dev->data;
int error = 0;
if (!sequence->channels ||
(sequence->channels & ~BIT_MASK(NPCX_ADC_CH_COUNT))) {
LOG_ERR("Invalid ADC channels");
return -EINVAL;
}
/* Fixed 10 bit resolution of npcx ADC */
if (sequence->resolution != 10) {
LOG_ERR("Unfixed 10 bit ADC resolution");
return -ENOTSUP;
}
error = adc_npcx_validate_buffer_size(dev, sequence);
if (error) {
LOG_ERR("ADC buffer size too small");
return error;
}
/* Save ADC sequence sampling buffer and its end pointer address */
data->buffer = sequence->buffer;
data->buf_end = data->buffer + sequence->buffer_size / sizeof(uint16_t);
/* Start ADC conversion */
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
return error;
}
/* ADC api functions */
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_npcx_data *const data =
CONTAINER_OF(ctx, struct adc_npcx_data, ctx);
data->repeat_buffer = data->buffer;
data->channels = ctx->sequence.channels;
/* Start ADC scan conversion */
adc_npcx_start_scan(data->adc_dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_npcx_data *const data =
CONTAINER_OF(ctx, struct adc_npcx_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int adc_npcx_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_npcx_config *const config = dev->config;
uint8_t channel_id = channel_cfg->channel_id;
if (channel_id >= NPCX_ADC_CH_COUNT) {
LOG_ERR("Invalid channel %d", channel_id);
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Unsupported channel acquisition time");
return -ENOTSUP;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -ENOTSUP;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Unsupported channel gain %d", channel_cfg->gain);
return -ENOTSUP;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Unsupported channel reference");
return -ENOTSUP;
}
/* Configure pin-mux for ADC channel */
npcx_pinctrl_mux_configure(config->alts_list + channel_cfg->channel_id,
1, 1);
LOG_DBG("ADC channel %d, alts(%d,%d)", channel_cfg->channel_id,
config->alts_list[channel_cfg->channel_id].group,
config->alts_list[channel_cfg->channel_id].bit);
return 0;
}
static int adc_npcx_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_npcx_data *const data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = adc_npcx_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#if defined(CONFIG_ADC_ASYNC)
static int adc_npcx_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_npcx_data *const data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = adc_npcx_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif /* CONFIG_ADC_ASYNC */
/* ADC driver registration */
static const struct adc_driver_api adc_npcx_driver_api = {
.channel_setup = adc_npcx_channel_setup,
.read = adc_npcx_read,
#if defined(CONFIG_ADC_ASYNC)
.read_async = adc_npcx_read_async,
#endif
.ref_internal = NPCX_ADC_VREF_VOL,
};
static int adc_npcx_init(const struct device *dev);
static const struct npcx_alt adc_alts[] = NPCX_DT_ALT_ITEMS_LIST(0);
static const struct adc_npcx_config adc_npcx_cfg_0 = {
.base = DT_INST_REG_ADDR(0),
.clk_cfg = NPCX_DT_CLK_CFG_ITEM(0),
.alts_list = adc_alts,
};
static struct adc_npcx_data adc_npcx_data_0 = {
ADC_CONTEXT_INIT_TIMER(adc_npcx_data_0, ctx),
ADC_CONTEXT_INIT_LOCK(adc_npcx_data_0, ctx),
ADC_CONTEXT_INIT_SYNC(adc_npcx_data_0, ctx),
};
DEVICE_DT_INST_DEFINE(0,
adc_npcx_init, NULL,
&adc_npcx_data_0, &adc_npcx_cfg_0,
PRE_KERNEL_1,
CONFIG_ADC_INIT_PRIORITY,
&adc_npcx_driver_api);
static int adc_npcx_init(const struct device *dev)
{
const struct adc_npcx_config *const config = dev->config;
struct adc_npcx_data *const data = dev->data;
struct adc_reg *const inst = HAL_INSTANCE(dev);
const struct device *const clk_dev = DEVICE_DT_GET(NPCX_CLK_CTRL_NODE);
int prescaler = 0, ret;
/* Save ADC device in data */
data->adc_dev = dev;
/* Turn on device clock first and get source clock freq. */
ret = clock_control_on(clk_dev, (clock_control_subsys_t *)
&config->clk_cfg);
if (ret < 0) {
LOG_ERR("Turn on ADC clock fail %d", ret);
return ret;
}
ret = clock_control_get_rate(clk_dev, (clock_control_subsys_t *)
&config->clk_cfg, &data->input_clk);
if (ret < 0) {
LOG_ERR("Get ADC clock rate error %d", ret);
return ret;
}
/* Configure the ADC clock */
prescaler = ceiling_fraction(data->input_clk, NPCX_ADC_CLK);
if (prescaler > 0x40)
prescaler = 0x40;
/* Set Core Clock Division Factor in order to obtain the ADC clock */
SET_FIELD(inst->ATCTL, NPCX_ATCTL_SCLKDIV_FIELD, prescaler - 1);
/* Set regular ADC delay */
SET_FIELD(inst->ATCTL, NPCX_ATCTL_DLY_FIELD, ADC_REGULAR_DLY_VAL);
/* Set ADC speed sequentially */
inst->ADCCNF2 = ADC_REGULAR_ADCCNF2_VAL;
inst->GENDLY = ADC_REGULAR_GENDLY_VAL;
inst->MEAST = ADC_REGULAR_MEAST_VAL;
/* Configure ADC interrupt and enable it */
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), adc_npcx_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
/* Initialize mutex of ADC channels */
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
BUILD_ASSERT(ARRAY_SIZE(adc_alts) == NPCX_ADC_CH_COUNT,
"The number of ADC channels and pin-mux configurations don't match!");