zephyr/kernel/work.c
Jennifer Williams 9aa0f212ae kernel: work: fix missing final else
work_queue_main() was missing final else statement
in the if else if construct. This commit adds else {}
to comply with coding guideline 15.7. Includes a
context-specific description of why this branch is empty.

Signed-off-by: Jennifer Williams <jennifer.m.williams@intel.com>
2021-04-27 17:31:59 -04:00

1054 lines
26 KiB
C

/*
* Copyright (c) 2020 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
*
* Second generation work queue implementation
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <wait_q.h>
#include <spinlock.h>
#include <errno.h>
#include <ksched.h>
#include <sys/printk.h>
static inline void flag_clear(uint32_t *flagp,
uint32_t bit)
{
*flagp &= ~BIT(bit);
}
static inline void flag_set(uint32_t *flagp,
uint32_t bit)
{
*flagp |= BIT(bit);
}
static inline bool flag_test(const uint32_t *flagp,
uint32_t bit)
{
return (*flagp & BIT(bit)) != 0U;
}
static inline bool flag_test_and_clear(uint32_t *flagp,
int bit)
{
bool ret = flag_test(flagp, bit);
flag_clear(flagp, bit);
return ret;
}
static inline void flags_set(uint32_t *flagp,
uint32_t flags)
{
*flagp = flags;
}
static inline uint32_t flags_get(const uint32_t *flagp)
{
return *flagp;
}
/* Lock to protect the internal state of all work items, work queues,
* and pending_cancels.
*/
static struct k_spinlock lock;
/* Invoked by work thread */
static void handle_flush(struct k_work *work)
{
struct z_work_flusher *flusher
= CONTAINER_OF(work, struct z_work_flusher, work);
k_sem_give(&flusher->sem);
}
static inline void init_flusher(struct z_work_flusher *flusher)
{
k_sem_init(&flusher->sem, 0, 1);
k_work_init(&flusher->work, handle_flush);
}
/* List of pending cancellations. */
static sys_slist_t pending_cancels;
/* Initialize a canceler record and add it to the list of pending
* cancels.
*
* Invoked with work lock held.
*
* @param canceler the structure used to notify a waiting process.
* @param work the work structure that is to be canceled
*/
static inline void init_work_cancel(struct z_work_canceller *canceler,
struct k_work *work)
{
k_sem_init(&canceler->sem, 0, 1);
canceler->work = work;
sys_slist_append(&pending_cancels, &canceler->node);
}
/* Complete cancellation of a work item and unlock held lock.
*
* Invoked with work lock held.
*
* Invoked from a work queue thread.
*
* Reschedules.
*
* @param work the work structre that has completed cancellation
*/
static void finalize_cancel_locked(struct k_work *work)
{
struct z_work_canceller *wc, *tmp;
sys_snode_t *prev = NULL;
/* Clear this first, so released high-priority threads don't
* see it when doing things.
*/
flag_clear(&work->flags, K_WORK_CANCELING_BIT);
/* Search for and remove the matching container, and release
* what's waiting for the completion. The same work item can
* appear multiple times in the list if multiple threads
* attempt to cancel it.
*/
SYS_SLIST_FOR_EACH_CONTAINER_SAFE(&pending_cancels, wc, tmp, node) {
if (wc->work == work) {
sys_slist_remove(&pending_cancels, prev, &wc->node);
k_sem_give(&wc->sem);
} else {
prev = &wc->node;
}
}
}
void k_work_init(struct k_work *work,
k_work_handler_t handler)
{
__ASSERT_NO_MSG(work != NULL);
__ASSERT_NO_MSG(handler != 0);
*work = (struct k_work)Z_WORK_INITIALIZER(handler);
}
static inline int work_busy_get_locked(const struct k_work *work)
{
return flags_get(&work->flags) & K_WORK_MASK;
}
int k_work_busy_get(const struct k_work *work)
{
k_spinlock_key_t key = k_spin_lock(&lock);
int ret = work_busy_get_locked(work);
k_spin_unlock(&lock, key);
return ret;
}
/* Add a flusher work item to the queue.
*
* Invoked with work lock held.
*
* Caller must notify queue of pending work.
*
* @param queue queue on which a work item may appear.
* @param work the work item that is either queued or running on @p
* queue
* @param flusher an uninitialized/unused flusher object
*/
static void queue_flusher_locked(struct k_work_q *queue,
struct k_work *work,
struct z_work_flusher *flusher)
{
bool in_list = false;
struct k_work *wn;
/* Determine whether the work item is still queued. */
SYS_SLIST_FOR_EACH_CONTAINER(&queue->pending, wn, node) {
if (wn == work) {
in_list = true;
break;
}
}
init_flusher(flusher);
if (in_list) {
sys_slist_insert(&queue->pending, &work->node,
&flusher->work.node);
} else {
sys_slist_prepend(&queue->pending, &flusher->work.node);
}
}
/* Try to remove a work item from the given queue.
*
* Invoked with work lock held.
*
* @param queue the queue from which the work should be removed
* @param work work that may be on the queue
*/
static inline void queue_remove_locked(struct k_work_q *queue,
struct k_work *work)
{
if (flag_test_and_clear(&work->flags, K_WORK_QUEUED_BIT)) {
(void)sys_slist_find_and_remove(&queue->pending, &work->node);
}
}
/* Potentially notify a queue that it needs to look for pending work.
*
* This may make the work queue thread ready, but as the lock is held it
* will not be a reschedule point. Callers should yield after the lock is
* released where appropriate (generally if this returns true).
*
* @param queue to be notified. If this is null no notification is required.
*
* @return true if and only if the queue was notified and woken, i.e. a
* reschedule is pending.
*/
static inline bool notify_queue_locked(struct k_work_q *queue)
{
bool rv = false;
if (queue != NULL) {
rv = z_sched_wake(&queue->notifyq, 0, NULL);
}
return rv;
}
/* Submit an work item to a queue if queue state allows new work.
*
* Submission is rejected if no queue is provided, or if the queue is
* draining and the work isn't being submitted from the queue's
* thread (chained submission).
*
* Invoked with work lock held.
* Conditionally notifies queue.
*
* @param queue the queue to which work should be submitted. This may
* be null, in which case the submission will fail.
*
* @param work to be submitted
*
* @retval 1 if successfully queued
* @retval -EINVAL if no queue is provided
* @retval -ENODEV if the queue is not started
* @retval -EBUSY if the submission was rejected (draining, plugged)
*/
static inline int queue_submit_locked(struct k_work_q *queue,
struct k_work *work)
{
if (queue == NULL) {
return -EINVAL;
}
int ret = -EBUSY;
bool chained = (_current == &queue->thread) && !k_is_in_isr();
bool draining = flag_test(&queue->flags, K_WORK_QUEUE_DRAIN_BIT);
bool plugged = flag_test(&queue->flags, K_WORK_QUEUE_PLUGGED_BIT);
/* Test for acceptability, in priority order:
*
* * -ENODEV if the queue isn't running.
* * -EBUSY if draining and not chained
* * -EBUSY if plugged and not draining
* * otherwise OK
*/
if (!flag_test(&queue->flags, K_WORK_QUEUE_STARTED_BIT)) {
ret = -ENODEV;
} else if (draining && !chained) {
ret = -EBUSY;
} else if (plugged && !draining) {
ret = -EBUSY;
} else {
sys_slist_append(&queue->pending, &work->node);
ret = 1;
(void)notify_queue_locked(queue);
}
return ret;
}
/* Attempt to submit work to a queue.
*
* The submission can fail if:
* * the work is cancelling,
* * no candidate queue can be identified;
* * the candidate queue rejects the submission.
*
* Invoked with work lock held.
* Conditionally notifies queue.
*
* @param work the work structure to be submitted
* @param queuep pointer to a queue reference. On input this should
* dereference to the proposed queue (which may be null); after completion it
* will be null if the work was not submitted or if submitted will reference
* the queue it was submitted to. That may or may not be the queue provided
* on input.
*
* @retval 0 if work was already submitted to a queue
* @retval 1 if work was not submitted and has been queued to @p queue
* @retval 2 if work was running and has been queued to the queue that was
* running it
* @retval -EBUSY if canceling or submission was rejected by queue
* @retval -EINVAL if no queue is provided
* @retval -ENODEV if the queue is not started
*/
static int submit_to_queue_locked(struct k_work *work,
struct k_work_q **queuep)
{
int ret = 0;
if (flag_test(&work->flags, K_WORK_CANCELING_BIT)) {
/* Disallowed */
ret = -EBUSY;
} else if (!flag_test(&work->flags, K_WORK_QUEUED_BIT)) {
/* Not currently queued */
ret = 1;
/* If no queue specified resubmit to last queue.
*/
if (*queuep == NULL) {
*queuep = work->queue;
}
/* If the work is currently running we have to use the
* queue it's running on to prevent handler
* re-entrancy.
*/
if (flag_test(&work->flags, K_WORK_RUNNING_BIT)) {
__ASSERT_NO_MSG(work->queue != NULL);
*queuep = work->queue;
ret = 2;
}
int rc = queue_submit_locked(*queuep, work);
if (rc < 0) {
ret = rc;
} else {
flag_set(&work->flags, K_WORK_QUEUED_BIT);
work->queue = *queuep;
}
} else {
/* Already queued, do nothing. */
}
if (ret <= 0) {
*queuep = NULL;
}
return ret;
}
int k_work_submit_to_queue(struct k_work_q *queue,
struct k_work *work)
{
__ASSERT_NO_MSG(work != NULL);
k_spinlock_key_t key = k_spin_lock(&lock);
int ret = submit_to_queue_locked(work, &queue);
k_spin_unlock(&lock, key);
/* If we changed the queue contents (as indicated by a positive ret)
* the queue thread may now be ready, but we missed the reschedule
* point because the lock was held. If this is being invoked by a
* preemptible thread then yield.
*/
if ((ret > 0) && (k_is_preempt_thread() != 0)) {
k_yield();
}
return ret;
}
/* Flush the work item if necessary.
*
* Flushing is necessary only if the work is either queued or running.
*
* Invoked with work lock held by key.
* Sleeps.
*
* @param work the work item that is to be flushed
* @param flusher state used to synchronize the flush
*
* @retval true if work is queued or running. If this happens the
* caller must take the flusher semaphore after releasing the lock.
*
* @retval false otherwise. No wait required.
*/
static bool work_flush_locked(struct k_work *work,
struct z_work_flusher *flusher)
{
bool need_flush = (flags_get(&work->flags)
& (K_WORK_QUEUED | K_WORK_RUNNING)) != 0U;
if (need_flush) {
struct k_work_q *queue = work->queue;
__ASSERT_NO_MSG(queue != NULL);
queue_flusher_locked(queue, work, flusher);
notify_queue_locked(queue);
}
return need_flush;
}
bool k_work_flush(struct k_work *work,
struct k_work_sync *sync)
{
__ASSERT_NO_MSG(work != NULL);
__ASSERT_NO_MSG(!flag_test(&work->flags, K_WORK_DELAYABLE_BIT));
__ASSERT_NO_MSG(!k_is_in_isr());
__ASSERT_NO_MSG(sync != NULL);
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(sync));
#endif
struct z_work_flusher *flusher = &sync->flusher;
k_spinlock_key_t key = k_spin_lock(&lock);
bool need_flush = work_flush_locked(work, flusher);
k_spin_unlock(&lock, key);
/* If necessary wait until the flusher item completes */
if (need_flush) {
k_sem_take(&flusher->sem, K_FOREVER);
}
return need_flush;
}
/* Execute the non-waiting steps necessary to cancel a work item.
*
* Invoked with work lock held.
*
* @param work the work item to be canceled.
*
* @retval true if we need to wait for the work item to finish canceling
* @retval false if the work item is idle
*
* @return k_busy_wait() captured under lock
*/
static int cancel_async_locked(struct k_work *work)
{
/* If we haven't already started canceling, do it now. */
if (!flag_test(&work->flags, K_WORK_CANCELING_BIT)) {
/* Remove it from the queue, if it's queued. */
queue_remove_locked(work->queue, work);
}
/* If it's still busy after it's been dequeued, then flag it
* as canceling.
*/
int ret = work_busy_get_locked(work);
if (ret != 0) {
flag_set(&work->flags, K_WORK_CANCELING_BIT);
ret = work_busy_get_locked(work);
}
return ret;
}
/* Complete cancellation necessary, release work lock, and wait if
* necessary.
*
* Invoked with work lock held by key.
* Sleeps.
*
* @param work work that is being canceled
* @param canceller state used to synchronize the cancellation
* @param key used by work lock
*
* @retval true if and only if the work was still active on entry. The caller
* must wait on the canceller semaphore after releasing the lock.
*
* @retval false if work was idle on entry. The caller need not wait.
*/
static bool cancel_sync_locked(struct k_work *work,
struct z_work_canceller *canceller)
{
bool ret = flag_test(&work->flags, K_WORK_CANCELING_BIT);
/* If something's still running then we have to wait for
* completion, which is indicated when finish_cancel() gets
* invoked.
*/
if (ret) {
init_work_cancel(canceller, work);
}
return ret;
}
int k_work_cancel(struct k_work *work)
{
__ASSERT_NO_MSG(work != NULL);
__ASSERT_NO_MSG(!flag_test(&work->flags, K_WORK_DELAYABLE_BIT));
k_spinlock_key_t key = k_spin_lock(&lock);
int ret = cancel_async_locked(work);
k_spin_unlock(&lock, key);
return ret;
}
bool k_work_cancel_sync(struct k_work *work,
struct k_work_sync *sync)
{
__ASSERT_NO_MSG(work != NULL);
__ASSERT_NO_MSG(sync != NULL);
__ASSERT_NO_MSG(!flag_test(&work->flags, K_WORK_DELAYABLE_BIT));
__ASSERT_NO_MSG(!k_is_in_isr());
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(sync));
#endif
struct z_work_canceller *canceller = &sync->canceller;
k_spinlock_key_t key = k_spin_lock(&lock);
bool pending = (work_busy_get_locked(work) != 0U);
bool need_wait = false;
if (pending) {
(void)cancel_async_locked(work);
need_wait = cancel_sync_locked(work, canceller);
}
k_spin_unlock(&lock, key);
if (need_wait) {
k_sem_take(&canceller->sem, K_FOREVER);
}
return pending;
}
/* Work has been dequeued and is about to be invoked by the work
* thread.
*
* If the work is being canceled the cancellation will be completed
* here, and the caller told not to use the work item.
*
* Invoked by work queue thread.
* Takes and releases lock.
* Reschedules via finalize_cancel_locked
*
* @param work work that is changing state
* @param queue queue that is running work
*
* @retval true if work is to be run by the work thread
* @retval false if it has been canceled and should not be run
*/
static inline bool work_set_running(struct k_work *work,
struct k_work_q *queue)
{
bool ret = false;
k_spinlock_key_t key = k_spin_lock(&lock);
/* Allow the work to be queued again. */
flag_clear(&work->flags, K_WORK_QUEUED_BIT);
/* Normally we indicate that the work is being processed by
* setting RUNNING. However, something may have initiated
* cancellation between when the work thread pulled this off
* its queue and this claimed the work lock. If that happened
* we complete the cancellation now and tell the work thread
* not to do anything.
*/
ret = !flag_test(&work->flags, K_WORK_CANCELING_BIT);
if (ret) {
/* Not cancelling: mark running and go */
flag_set(&work->flags, K_WORK_RUNNING_BIT);
} else {
/* Caught the item before being invoked; complete the
* cancellation now.
*/
finalize_cancel_locked(work);
}
k_spin_unlock(&lock, key);
return ret;
}
/* Work handler has been called and is about to go idle.
*
* If the work is being canceled this will notify anything waiting
* for the cancellation.
*
* Invoked by work queue thread.
* Takes and releases lock.
* Reschedules via finalize_cancel_locked
*
* @param work work that is in running state
*/
static inline void work_clear_running(struct k_work *work)
{
k_spinlock_key_t key = k_spin_lock(&lock);
/* Clear running */
flag_clear(&work->flags, K_WORK_RUNNING_BIT);
if (flag_test(&work->flags, K_WORK_CANCELING_BIT)) {
finalize_cancel_locked(work);
}
k_spin_unlock(&lock, key);
}
/* Loop executed by a work queue thread.
*
* @param workq_ptr pointer to the work queue structure
*/
static void work_queue_main(void *workq_ptr, void *p2, void *p3)
{
struct k_work_q *queue = (struct k_work_q *)workq_ptr;
while (true) {
sys_snode_t *node;
struct k_work *work = NULL;
k_spinlock_key_t key = k_spin_lock(&lock);
/* Clear the record of processing any previous work, and check
* for new work.
*/
node = sys_slist_get(&queue->pending);
if (node != NULL) {
/* Mark that there's some work active that's
* not on the pending list.
*/
flag_set(&queue->flags, K_WORK_QUEUE_BUSY_BIT);
work = CONTAINER_OF(node, struct k_work, node);
} else if (flag_test_and_clear(&queue->flags,
K_WORK_QUEUE_DRAIN_BIT)) {
/* Not busy and draining: move threads waiting for
* drain to ready state. The held spinlock inhibits
* immediate reschedule; released threads get their
* chance when this invokes z_sched_wait() below.
*
* We don't touch K_WORK_QUEUE_PLUGGABLE, so getting
* here doesn't mean that the queue will allow new
* submissions.
*/
(void)z_sched_wake_all(&queue->drainq, 1, NULL);
} else {
/* No work is available and no queue state requires
* special handling.
*/
;
}
if (work == NULL) {
/* Nothing's had a chance to add work since we took
* the lock, and we didn't find work nor got asked to
* stop. Just go to sleep: when something happens the
* work thread will be woken and we can check again.
*/
(void)z_sched_wait(&lock, key, &queue->notifyq,
K_FOREVER, NULL);
continue;
}
k_spin_unlock(&lock, key);
if (work != NULL) {
bool yield;
k_work_handler_t handler = work->handler;
__ASSERT_NO_MSG(handler != 0);
if (work_set_running(work, queue)) {
handler(work);
work_clear_running(work);
}
/* No longer referencing the work, so we can clear the
* BUSY flag while we yield to prevent starving other
* threads.
*/
key = k_spin_lock(&lock);
flag_clear(&queue->flags, K_WORK_QUEUE_BUSY_BIT);
yield = !flag_test(&queue->flags, K_WORK_QUEUE_NO_YIELD_BIT);
k_spin_unlock(&lock, key);
/* Optionally yield to prevent the work queue from
* starving other threads.
*/
if (yield) {
k_yield();
}
}
}
}
void k_work_queue_start(struct k_work_q *queue,
k_thread_stack_t *stack,
size_t stack_size,
int prio,
const struct k_work_queue_config *cfg)
{
__ASSERT_NO_MSG(queue);
__ASSERT_NO_MSG(stack);
__ASSERT_NO_MSG(!flag_test(&queue->flags, K_WORK_QUEUE_STARTED_BIT));
uint32_t flags = K_WORK_QUEUE_STARTED;
sys_slist_init(&queue->pending);
z_waitq_init(&queue->notifyq);
z_waitq_init(&queue->drainq);
if ((cfg != NULL) && cfg->no_yield) {
flags |= K_WORK_QUEUE_NO_YIELD;
}
/* It hasn't actually been started yet, but all the state is in place
* so we can submit things and once the thread gets control it's ready
* to roll.
*/
flags_set(&queue->flags, flags);
(void)k_thread_create(&queue->thread, stack, stack_size,
work_queue_main, queue, NULL, NULL,
prio, 0, K_FOREVER);
if ((cfg != NULL) && (cfg->name != NULL)) {
k_thread_name_set(&queue->thread, cfg->name);
}
k_thread_start(&queue->thread);
}
int k_work_queue_drain(struct k_work_q *queue,
bool plug)
{
__ASSERT_NO_MSG(queue);
__ASSERT_NO_MSG(!k_is_in_isr());
int ret = 0;
k_spinlock_key_t key = k_spin_lock(&lock);
if (((flags_get(&queue->flags)
& (K_WORK_QUEUE_BUSY | K_WORK_QUEUE_DRAIN)) != 0U)
|| plug
|| !sys_slist_is_empty(&queue->pending)) {
flag_set(&queue->flags, K_WORK_QUEUE_DRAIN_BIT);
if (plug) {
flag_set(&queue->flags, K_WORK_QUEUE_PLUGGED_BIT);
}
notify_queue_locked(queue);
ret = z_sched_wait(&lock, key, &queue->drainq,
K_FOREVER, NULL);
} else {
k_spin_unlock(&lock, key);
}
return ret;
}
int k_work_queue_unplug(struct k_work_q *queue)
{
__ASSERT_NO_MSG(queue);
int ret = -EALREADY;
k_spinlock_key_t key = k_spin_lock(&lock);
if (flag_test_and_clear(&queue->flags, K_WORK_QUEUE_PLUGGED_BIT)) {
ret = 0;
}
k_spin_unlock(&lock, key);
return ret;
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
/* Timeout handler for delayable work.
*
* Invoked by timeout infrastructure.
* Takes and releases work lock.
* Conditionally reschedules.
*/
static void work_timeout(struct _timeout *to)
{
struct k_work_delayable *dw
= CONTAINER_OF(to, struct k_work_delayable, timeout);
struct k_work *wp = &dw->work;
k_spinlock_key_t key = k_spin_lock(&lock);
struct k_work_q *queue = NULL;
/* If the work is still marked delayed (should be) then clear that
* state and submit it to the queue. If successful the queue will be
* notified of new work at the next reschedule point.
*
* If not successful there is no notification that the work has been
* abandoned. Sorry.
*/
if (flag_test_and_clear(&wp->flags, K_WORK_DELAYED_BIT)) {
queue = dw->queue;
(void)submit_to_queue_locked(wp, &queue);
}
k_spin_unlock(&lock, key);
}
void k_work_init_delayable(struct k_work_delayable *dwork,
k_work_handler_t handler)
{
__ASSERT_NO_MSG(dwork != NULL);
__ASSERT_NO_MSG(handler != 0);
*dwork = (struct k_work_delayable){
.work = {
.handler = handler,
.flags = K_WORK_DELAYABLE,
},
};
z_init_timeout(&dwork->timeout);
(void)work_timeout;
}
static inline int work_delayable_busy_get_locked(const struct k_work_delayable *dwork)
{
return atomic_get(&dwork->work.flags) & K_WORK_MASK;
}
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
{
k_spinlock_key_t key = k_spin_lock(&lock);
int ret = work_delayable_busy_get_locked(dwork);
k_spin_unlock(&lock, key);
return ret;
}
/* Attempt to schedule a work item for future (maybe immediate)
* submission.
*
* Invoked with work lock held.
*
* See also submit_to_queue_locked(), which implements this for a no-wait
* delay.
*
* Invoked with work lock held.
*
* @param queuep pointer to a pointer to a queue. On input this
* should dereference to the proposed queue (which may be null); after
* completion it will be null if the work was not submitted or if
* submitted will reference the queue it was submitted to. That may
* or may not be the queue provided on input.
*
* @param dwork the delayed work structure
*
* @param delay the delay to use before scheduling.
*
* @retval from submit_to_queue_locked() if delay is K_NO_WAIT; otherwise
* @retval 1 to indicate successfully scheduled.
*/
static int schedule_for_queue_locked(struct k_work_q **queuep,
struct k_work_delayable *dwork,
k_timeout_t delay)
{
int ret = 1;
struct k_work *work = &dwork->work;
if (K_TIMEOUT_EQ(delay, K_NO_WAIT)) {
return submit_to_queue_locked(work, queuep);
}
flag_set(&work->flags, K_WORK_DELAYED_BIT);
dwork->queue = *queuep;
/* Add timeout */
z_add_timeout(&dwork->timeout, work_timeout, delay);
return ret;
}
/* Unschedule delayable work.
*
* If the work is delayed, cancel the timeout and clear the delayed
* flag.
*
* Invoked with work lock held.
*
* @param dwork pointer to delayable work structure.
*
* @return true if and only if work had been delayed so the timeout
* was cancelled.
*/
static inline bool unschedule_locked(struct k_work_delayable *dwork)
{
bool ret = false;
struct k_work *work = &dwork->work;
/* If scheduled, try to cancel. */
if (flag_test_and_clear(&work->flags, K_WORK_DELAYED_BIT)) {
z_abort_timeout(&dwork->timeout);
ret = true;
}
return ret;
}
/* Full cancellation of a delayable work item.
*
* Unschedules the delayed part then delegates to standard work
* cancellation.
*
* Invoked with work lock held.
*
* @param dwork delayable work item
*
* @return k_work_busy_get() flags
*/
static int cancel_delayable_async_locked(struct k_work_delayable *dwork)
{
(void)unschedule_locked(dwork);
return cancel_async_locked(&dwork->work);
}
int k_work_schedule_for_queue(struct k_work_q *queue,
struct k_work_delayable *dwork,
k_timeout_t delay)
{
__ASSERT_NO_MSG(dwork != NULL);
struct k_work *work = &dwork->work;
int ret = 0;
k_spinlock_key_t key = k_spin_lock(&lock);
/* Schedule the work item if it's idle or running. */
if ((work_busy_get_locked(work) & ~K_WORK_RUNNING) == 0U) {
ret = schedule_for_queue_locked(&queue, dwork, delay);
}
k_spin_unlock(&lock, key);
return ret;
}
int k_work_reschedule_for_queue(struct k_work_q *queue,
struct k_work_delayable *dwork,
k_timeout_t delay)
{
__ASSERT_NO_MSG(dwork != NULL);
int ret = 0;
k_spinlock_key_t key = k_spin_lock(&lock);
/* Remove any active scheduling. */
(void)unschedule_locked(dwork);
/* Schedule the work item with the new parameters. */
ret = schedule_for_queue_locked(&queue, dwork, delay);
k_spin_unlock(&lock, key);
return ret;
}
int k_work_cancel_delayable(struct k_work_delayable *dwork)
{
__ASSERT_NO_MSG(dwork != NULL);
k_spinlock_key_t key = k_spin_lock(&lock);
int ret = cancel_delayable_async_locked(dwork);
k_spin_unlock(&lock, key);
return ret;
}
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork,
struct k_work_sync *sync)
{
__ASSERT_NO_MSG(dwork != NULL);
__ASSERT_NO_MSG(sync != NULL);
__ASSERT_NO_MSG(!k_is_in_isr());
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(sync));
#endif
struct z_work_canceller *canceller = &sync->canceller;
k_spinlock_key_t key = k_spin_lock(&lock);
bool pending = (work_delayable_busy_get_locked(dwork) != 0U);
bool need_wait = false;
if (pending) {
(void)cancel_delayable_async_locked(dwork);
need_wait = cancel_sync_locked(&dwork->work, canceller);
}
k_spin_unlock(&lock, key);
if (need_wait) {
k_sem_take(&canceller->sem, K_FOREVER);
}
return pending;
}
bool k_work_flush_delayable(struct k_work_delayable *dwork,
struct k_work_sync *sync)
{
__ASSERT_NO_MSG(dwork != NULL);
__ASSERT_NO_MSG(sync != NULL);
__ASSERT_NO_MSG(!k_is_in_isr());
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(sync));
#endif
struct k_work *work = &dwork->work;
struct z_work_flusher *flusher = &sync->flusher;
k_spinlock_key_t key = k_spin_lock(&lock);
/* If it's idle release the lock and return immediately. */
if (work_busy_get_locked(work) == 0U) {
k_spin_unlock(&lock, key);
return false;
}
/* If unscheduling did something then submit it. Ignore a
* failed submission (e.g. when cancelling).
*/
if (unschedule_locked(dwork)) {
struct k_work_q *queue = dwork->queue;
(void)submit_to_queue_locked(work, &queue);
}
/* Wait for it to finish */
bool need_flush = work_flush_locked(work, flusher);
k_spin_unlock(&lock, key);
/* If necessary wait until the flusher item completes */
if (need_flush) {
k_sem_take(&flusher->sem, K_FOREVER);
}
return need_flush;
}
#endif /* CONFIG_SYS_CLOCK_EXISTS */