f483b1bc4c
Fix a lot of typos Signed-off-by: Nazar Kazakov <nazar.kazakov.work@gmail.com>
1152 lines
26 KiB
C
1152 lines
26 KiB
C
/* NVS: non volatile storage in flash
|
|
*
|
|
* Copyright (c) 2018 Laczen
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <drivers/flash.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <fs/nvs.h>
|
|
#include <sys/crc.h>
|
|
#include "nvs_priv.h"
|
|
|
|
#include <logging/log.h>
|
|
LOG_MODULE_REGISTER(fs_nvs, CONFIG_NVS_LOG_LEVEL);
|
|
|
|
/* basic routines */
|
|
/* nvs_al_size returns size aligned to fs->write_block_size */
|
|
static inline size_t nvs_al_size(struct nvs_fs *fs, size_t len)
|
|
{
|
|
uint8_t write_block_size = fs->flash_parameters->write_block_size;
|
|
|
|
if (write_block_size <= 1U) {
|
|
return len;
|
|
}
|
|
return (len + (write_block_size - 1U)) & ~(write_block_size - 1U);
|
|
}
|
|
/* end basic routines */
|
|
|
|
/* flash routines */
|
|
/* basic aligned flash write to nvs address */
|
|
static int nvs_flash_al_wrt(struct nvs_fs *fs, uint32_t addr, const void *data,
|
|
size_t len)
|
|
{
|
|
const uint8_t *data8 = (const uint8_t *)data;
|
|
int rc = 0;
|
|
off_t offset;
|
|
size_t blen;
|
|
uint8_t buf[NVS_BLOCK_SIZE];
|
|
|
|
if (!len) {
|
|
/* Nothing to write, avoid changing the flash protection */
|
|
return 0;
|
|
}
|
|
|
|
offset = fs->offset;
|
|
offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
|
|
offset += addr & ADDR_OFFS_MASK;
|
|
|
|
blen = len & ~(fs->flash_parameters->write_block_size - 1U);
|
|
if (blen > 0) {
|
|
rc = flash_write(fs->flash_device, offset, data8, blen);
|
|
if (rc) {
|
|
/* flash write error */
|
|
goto end;
|
|
}
|
|
len -= blen;
|
|
offset += blen;
|
|
data8 += blen;
|
|
}
|
|
if (len) {
|
|
memcpy(buf, data8, len);
|
|
(void)memset(buf + len, fs->flash_parameters->erase_value,
|
|
fs->flash_parameters->write_block_size - len);
|
|
|
|
rc = flash_write(fs->flash_device, offset, buf,
|
|
fs->flash_parameters->write_block_size);
|
|
}
|
|
|
|
end:
|
|
return rc;
|
|
}
|
|
|
|
/* basic flash read from nvs address */
|
|
static int nvs_flash_rd(struct nvs_fs *fs, uint32_t addr, void *data,
|
|
size_t len)
|
|
{
|
|
int rc;
|
|
off_t offset;
|
|
|
|
offset = fs->offset;
|
|
offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
|
|
offset += addr & ADDR_OFFS_MASK;
|
|
|
|
rc = flash_read(fs->flash_device, offset, data, len);
|
|
return rc;
|
|
|
|
}
|
|
|
|
/* allocation entry write */
|
|
static int nvs_flash_ate_wrt(struct nvs_fs *fs, const struct nvs_ate *entry)
|
|
{
|
|
int rc;
|
|
|
|
rc = nvs_flash_al_wrt(fs, fs->ate_wra, entry,
|
|
sizeof(struct nvs_ate));
|
|
fs->ate_wra -= nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* data write */
|
|
static int nvs_flash_data_wrt(struct nvs_fs *fs, const void *data, size_t len)
|
|
{
|
|
int rc;
|
|
|
|
rc = nvs_flash_al_wrt(fs, fs->data_wra, data, len);
|
|
fs->data_wra += nvs_al_size(fs, len);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* flash ate read */
|
|
static int nvs_flash_ate_rd(struct nvs_fs *fs, uint32_t addr,
|
|
struct nvs_ate *entry)
|
|
{
|
|
return nvs_flash_rd(fs, addr, entry, sizeof(struct nvs_ate));
|
|
}
|
|
|
|
/* end of basic flash routines */
|
|
|
|
/* advanced flash routines */
|
|
|
|
/* nvs_flash_block_cmp compares the data in flash at addr to data
|
|
* in blocks of size NVS_BLOCK_SIZE aligned to fs->write_block_size
|
|
* returns 0 if equal, 1 if not equal, errcode if error
|
|
*/
|
|
static int nvs_flash_block_cmp(struct nvs_fs *fs, uint32_t addr, const void *data,
|
|
size_t len)
|
|
{
|
|
const uint8_t *data8 = (const uint8_t *)data;
|
|
int rc;
|
|
size_t bytes_to_cmp, block_size;
|
|
uint8_t buf[NVS_BLOCK_SIZE];
|
|
|
|
block_size =
|
|
NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U);
|
|
|
|
while (len) {
|
|
bytes_to_cmp = MIN(block_size, len);
|
|
rc = nvs_flash_rd(fs, addr, buf, bytes_to_cmp);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
rc = memcmp(data8, buf, bytes_to_cmp);
|
|
if (rc) {
|
|
return 1;
|
|
}
|
|
len -= bytes_to_cmp;
|
|
addr += bytes_to_cmp;
|
|
data8 += bytes_to_cmp;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* nvs_flash_cmp_const compares the data in flash at addr to a constant
|
|
* value. returns 0 if all data in flash is equal to value, 1 if not equal,
|
|
* errcode if error
|
|
*/
|
|
static int nvs_flash_cmp_const(struct nvs_fs *fs, uint32_t addr, uint8_t value,
|
|
size_t len)
|
|
{
|
|
int rc;
|
|
size_t bytes_to_cmp, block_size;
|
|
uint8_t cmp[NVS_BLOCK_SIZE];
|
|
|
|
block_size =
|
|
NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U);
|
|
|
|
(void)memset(cmp, value, block_size);
|
|
while (len) {
|
|
bytes_to_cmp = MIN(block_size, len);
|
|
rc = nvs_flash_block_cmp(fs, addr, cmp, bytes_to_cmp);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
len -= bytes_to_cmp;
|
|
addr += bytes_to_cmp;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* flash block move: move a block at addr to the current data write location
|
|
* and updates the data write location.
|
|
*/
|
|
static int nvs_flash_block_move(struct nvs_fs *fs, uint32_t addr, size_t len)
|
|
{
|
|
int rc;
|
|
size_t bytes_to_copy, block_size;
|
|
uint8_t buf[NVS_BLOCK_SIZE];
|
|
|
|
block_size =
|
|
NVS_BLOCK_SIZE & ~(fs->flash_parameters->write_block_size - 1U);
|
|
|
|
while (len) {
|
|
bytes_to_copy = MIN(block_size, len);
|
|
rc = nvs_flash_rd(fs, addr, buf, bytes_to_copy);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
rc = nvs_flash_data_wrt(fs, buf, bytes_to_copy);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
len -= bytes_to_copy;
|
|
addr += bytes_to_copy;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* erase a sector and verify erase was OK.
|
|
* return 0 if OK, errorcode on error.
|
|
*/
|
|
static int nvs_flash_erase_sector(struct nvs_fs *fs, uint32_t addr)
|
|
{
|
|
int rc;
|
|
off_t offset;
|
|
|
|
addr &= ADDR_SECT_MASK;
|
|
|
|
offset = fs->offset;
|
|
offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
|
|
|
|
LOG_DBG("Erasing flash at %lx, len %d", (long int) offset,
|
|
fs->sector_size);
|
|
rc = flash_erase(fs->flash_device, offset, fs->sector_size);
|
|
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
if (nvs_flash_cmp_const(fs, addr, fs->flash_parameters->erase_value,
|
|
fs->sector_size)) {
|
|
rc = -ENXIO;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* crc update on allocation entry */
|
|
static void nvs_ate_crc8_update(struct nvs_ate *entry)
|
|
{
|
|
uint8_t crc8;
|
|
|
|
crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
|
|
entry->crc8 = crc8;
|
|
}
|
|
|
|
/* crc check on allocation entry
|
|
* returns 0 if OK, 1 on crc fail
|
|
*/
|
|
static int nvs_ate_crc8_check(const struct nvs_ate *entry)
|
|
{
|
|
uint8_t crc8;
|
|
|
|
crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
|
|
if (crc8 == entry->crc8) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* nvs_ate_cmp_const compares an ATE to a constant value. returns 0 if
|
|
* the whole ATE is equal to value, 1 if not equal.
|
|
*/
|
|
|
|
static int nvs_ate_cmp_const(const struct nvs_ate *entry, uint8_t value)
|
|
{
|
|
const uint8_t *data8 = (const uint8_t *)entry;
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(struct nvs_ate); i++) {
|
|
if (data8[i] != value) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* nvs_ate_valid validates an ate:
|
|
* return 1 if crc8 and offset valid,
|
|
* 0 otherwise
|
|
*/
|
|
static int nvs_ate_valid(struct nvs_fs *fs, const struct nvs_ate *entry)
|
|
{
|
|
size_t ate_size;
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
if ((nvs_ate_crc8_check(entry)) ||
|
|
(entry->offset >= (fs->sector_size - ate_size))) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/* nvs_close_ate_valid validates an sector close ate: a valid sector close ate:
|
|
* - valid ate
|
|
* - len = 0 and id = 0xFFFF
|
|
* - offset points to location at ate multiple from sector size
|
|
* return 1 if valid, 0 otherwise
|
|
*/
|
|
static int nvs_close_ate_valid(struct nvs_fs *fs, const struct nvs_ate *entry)
|
|
{
|
|
size_t ate_size;
|
|
|
|
if ((!nvs_ate_valid(fs, entry)) || (entry->len != 0U) ||
|
|
(entry->id != 0xFFFF)) {
|
|
return 0;
|
|
}
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
if ((fs->sector_size - entry->offset) % ate_size) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* store an entry in flash */
|
|
static int nvs_flash_wrt_entry(struct nvs_fs *fs, uint16_t id, const void *data,
|
|
size_t len)
|
|
{
|
|
int rc;
|
|
struct nvs_ate entry;
|
|
size_t ate_size;
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
entry.id = id;
|
|
entry.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK);
|
|
entry.len = (uint16_t)len;
|
|
entry.part = 0xff;
|
|
|
|
nvs_ate_crc8_update(&entry);
|
|
|
|
rc = nvs_flash_data_wrt(fs, data, len);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
rc = nvs_flash_ate_wrt(fs, &entry);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* end of flash routines */
|
|
|
|
/* If the closing ate is invalid, its offset cannot be trusted and
|
|
* the last valid ate of the sector should instead try to be recovered by going
|
|
* through all ate's.
|
|
*
|
|
* addr should point to the faulty closing ate and will be updated to the last
|
|
* valid ate. If no valid ate is found it will be left untouched.
|
|
*/
|
|
static int nvs_recover_last_ate(struct nvs_fs *fs, uint32_t *addr)
|
|
{
|
|
uint32_t data_end_addr, ate_end_addr;
|
|
struct nvs_ate end_ate;
|
|
size_t ate_size;
|
|
int rc;
|
|
|
|
LOG_DBG("Recovering last ate from sector %d",
|
|
(*addr >> ADDR_SECT_SHIFT));
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
*addr -= ate_size;
|
|
ate_end_addr = *addr;
|
|
data_end_addr = *addr & ADDR_SECT_MASK;
|
|
while (ate_end_addr > data_end_addr) {
|
|
rc = nvs_flash_ate_rd(fs, ate_end_addr, &end_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
if (nvs_ate_valid(fs, &end_ate)) {
|
|
/* found a valid ate, update data_end_addr and *addr */
|
|
data_end_addr &= ADDR_SECT_MASK;
|
|
data_end_addr += end_ate.offset + end_ate.len;
|
|
*addr = ate_end_addr;
|
|
}
|
|
ate_end_addr -= ate_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* walking through allocation entry list, from newest to oldest entries
|
|
* read ate from addr, modify addr to the previous ate
|
|
*/
|
|
static int nvs_prev_ate(struct nvs_fs *fs, uint32_t *addr, struct nvs_ate *ate)
|
|
{
|
|
int rc;
|
|
struct nvs_ate close_ate;
|
|
size_t ate_size;
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
rc = nvs_flash_ate_rd(fs, *addr, ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
*addr += ate_size;
|
|
if (((*addr) & ADDR_OFFS_MASK) != (fs->sector_size - ate_size)) {
|
|
return 0;
|
|
}
|
|
|
|
/* last ate in sector, do jump to previous sector */
|
|
if (((*addr) >> ADDR_SECT_SHIFT) == 0U) {
|
|
*addr += ((fs->sector_count - 1) << ADDR_SECT_SHIFT);
|
|
} else {
|
|
*addr -= (1 << ADDR_SECT_SHIFT);
|
|
}
|
|
|
|
rc = nvs_flash_ate_rd(fs, *addr, &close_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
rc = nvs_ate_cmp_const(&close_ate, fs->flash_parameters->erase_value);
|
|
/* at the end of filesystem */
|
|
if (!rc) {
|
|
*addr = fs->ate_wra;
|
|
return 0;
|
|
}
|
|
|
|
/* Update the address if the close ate is valid.
|
|
*/
|
|
if (nvs_close_ate_valid(fs, &close_ate)) {
|
|
(*addr) &= ADDR_SECT_MASK;
|
|
(*addr) += close_ate.offset;
|
|
return 0;
|
|
}
|
|
|
|
/* The close_ate was invalid, `lets find out the last valid ate
|
|
* and point the address to this found ate.
|
|
*
|
|
* remark: if there was absolutely no valid data in the sector *addr
|
|
* is kept at sector_end - 2*ate_size, the next read will contain
|
|
* invalid data and continue with a sector jump
|
|
*/
|
|
return nvs_recover_last_ate(fs, addr);
|
|
}
|
|
|
|
static void nvs_sector_advance(struct nvs_fs *fs, uint32_t *addr)
|
|
{
|
|
*addr += (1 << ADDR_SECT_SHIFT);
|
|
if ((*addr >> ADDR_SECT_SHIFT) == fs->sector_count) {
|
|
*addr -= (fs->sector_count << ADDR_SECT_SHIFT);
|
|
}
|
|
}
|
|
|
|
/* allocation entry close (this closes the current sector) by writing offset
|
|
* of last ate to the sector end.
|
|
*/
|
|
static int nvs_sector_close(struct nvs_fs *fs)
|
|
{
|
|
int rc;
|
|
struct nvs_ate close_ate;
|
|
size_t ate_size;
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
close_ate.id = 0xFFFF;
|
|
close_ate.len = 0U;
|
|
close_ate.offset = (uint16_t)((fs->ate_wra + ate_size) & ADDR_OFFS_MASK);
|
|
|
|
fs->ate_wra &= ADDR_SECT_MASK;
|
|
fs->ate_wra += (fs->sector_size - ate_size);
|
|
|
|
nvs_ate_crc8_update(&close_ate);
|
|
|
|
rc = nvs_flash_ate_wrt(fs, &close_ate);
|
|
|
|
nvs_sector_advance(fs, &fs->ate_wra);
|
|
|
|
fs->data_wra = fs->ate_wra & ADDR_SECT_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvs_add_gc_done_ate(struct nvs_fs *fs)
|
|
{
|
|
struct nvs_ate gc_done_ate;
|
|
|
|
LOG_DBG("Adding gc done ate at %x", fs->ate_wra & ADDR_OFFS_MASK);
|
|
gc_done_ate.id = 0xffff;
|
|
gc_done_ate.len = 0U;
|
|
gc_done_ate.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK);
|
|
nvs_ate_crc8_update(&gc_done_ate);
|
|
|
|
return nvs_flash_ate_wrt(fs, &gc_done_ate);
|
|
}
|
|
/* garbage collection: the address ate_wra has been updated to the new sector
|
|
* that has just been started. The data to gc is in the sector after this new
|
|
* sector.
|
|
*/
|
|
static int nvs_gc(struct nvs_fs *fs)
|
|
{
|
|
int rc;
|
|
struct nvs_ate close_ate, gc_ate, wlk_ate;
|
|
uint32_t sec_addr, gc_addr, gc_prev_addr, wlk_addr, wlk_prev_addr,
|
|
data_addr, stop_addr;
|
|
size_t ate_size;
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
sec_addr = (fs->ate_wra & ADDR_SECT_MASK);
|
|
nvs_sector_advance(fs, &sec_addr);
|
|
gc_addr = sec_addr + fs->sector_size - ate_size;
|
|
|
|
/* if the sector is not closed don't do gc */
|
|
rc = nvs_flash_ate_rd(fs, gc_addr, &close_ate);
|
|
if (rc < 0) {
|
|
/* flash error */
|
|
return rc;
|
|
}
|
|
|
|
rc = nvs_ate_cmp_const(&close_ate, fs->flash_parameters->erase_value);
|
|
if (!rc) {
|
|
goto gc_done;
|
|
}
|
|
|
|
stop_addr = gc_addr - ate_size;
|
|
|
|
if (nvs_close_ate_valid(fs, &close_ate)) {
|
|
gc_addr &= ADDR_SECT_MASK;
|
|
gc_addr += close_ate.offset;
|
|
} else {
|
|
rc = nvs_recover_last_ate(fs, &gc_addr);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
do {
|
|
gc_prev_addr = gc_addr;
|
|
rc = nvs_prev_ate(fs, &gc_addr, &gc_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
if (!nvs_ate_valid(fs, &gc_ate)) {
|
|
continue;
|
|
}
|
|
|
|
wlk_addr = fs->ate_wra;
|
|
do {
|
|
wlk_prev_addr = wlk_addr;
|
|
rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
/* if ate with same id is reached we might need to copy.
|
|
* only consider valid wlk_ate's. Something wrong might
|
|
* have been written that has the same ate but is
|
|
* invalid, don't consider these as a match.
|
|
*/
|
|
if ((wlk_ate.id == gc_ate.id) &&
|
|
(nvs_ate_valid(fs, &wlk_ate))) {
|
|
break;
|
|
}
|
|
} while (wlk_addr != fs->ate_wra);
|
|
|
|
/* if walk has reached the same address as gc_addr copy is
|
|
* needed unless it is a deleted item.
|
|
*/
|
|
if ((wlk_prev_addr == gc_prev_addr) && gc_ate.len) {
|
|
/* copy needed */
|
|
LOG_DBG("Moving %d, len %d", gc_ate.id, gc_ate.len);
|
|
|
|
data_addr = (gc_prev_addr & ADDR_SECT_MASK);
|
|
data_addr += gc_ate.offset;
|
|
|
|
gc_ate.offset = (uint16_t)(fs->data_wra & ADDR_OFFS_MASK);
|
|
nvs_ate_crc8_update(&gc_ate);
|
|
|
|
rc = nvs_flash_block_move(fs, data_addr, gc_ate.len);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
rc = nvs_flash_ate_wrt(fs, &gc_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
}
|
|
} while (gc_prev_addr != stop_addr);
|
|
|
|
gc_done:
|
|
|
|
/* Make it possible to detect that gc has finished by writing a
|
|
* gc done ate to the sector. In the field we might have nvs systems
|
|
* that do not have sufficient space to add this ate, so for these
|
|
* situations avoid adding the gc done ate.
|
|
*/
|
|
|
|
if (fs->ate_wra >= (fs->data_wra + ate_size)) {
|
|
rc = nvs_add_gc_done_ate(fs);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Erase the gc'ed sector */
|
|
rc = nvs_flash_erase_sector(fs, sec_addr);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int nvs_startup(struct nvs_fs *fs)
|
|
{
|
|
int rc;
|
|
struct nvs_ate last_ate;
|
|
size_t ate_size, empty_len;
|
|
/* Initialize addr to 0 for the case fs->sector_count == 0. This
|
|
* should never happen as this is verified in nvs_mount() but both
|
|
* Coverity and GCC believe the contrary.
|
|
*/
|
|
uint32_t addr = 0U;
|
|
uint16_t i, closed_sectors = 0;
|
|
uint8_t erase_value = fs->flash_parameters->erase_value;
|
|
|
|
k_mutex_lock(&fs->nvs_lock, K_FOREVER);
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
/* step through the sectors to find a open sector following
|
|
* a closed sector, this is where NVS can to write.
|
|
*/
|
|
for (i = 0; i < fs->sector_count; i++) {
|
|
addr = (i << ADDR_SECT_SHIFT) +
|
|
(uint16_t)(fs->sector_size - ate_size);
|
|
rc = nvs_flash_cmp_const(fs, addr, erase_value,
|
|
sizeof(struct nvs_ate));
|
|
if (rc) {
|
|
/* closed sector */
|
|
closed_sectors++;
|
|
nvs_sector_advance(fs, &addr);
|
|
rc = nvs_flash_cmp_const(fs, addr, erase_value,
|
|
sizeof(struct nvs_ate));
|
|
if (!rc) {
|
|
/* open sector */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* all sectors are closed, this is not a nvs fs */
|
|
if (closed_sectors == fs->sector_count) {
|
|
rc = -EDEADLK;
|
|
goto end;
|
|
}
|
|
|
|
if (i == fs->sector_count) {
|
|
/* none of the sectors where closed, in most cases we can set
|
|
* the address to the first sector, except when there are only
|
|
* two sectors. Then we can only set it to the first sector if
|
|
* the last sector contains no ate's. So we check this first
|
|
*/
|
|
rc = nvs_flash_cmp_const(fs, addr - ate_size, erase_value,
|
|
sizeof(struct nvs_ate));
|
|
if (!rc) {
|
|
/* empty ate */
|
|
nvs_sector_advance(fs, &addr);
|
|
}
|
|
}
|
|
|
|
/* addr contains address of closing ate in the most recent sector,
|
|
* search for the last valid ate using the recover_last_ate routine
|
|
*/
|
|
|
|
rc = nvs_recover_last_ate(fs, &addr);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
|
|
|
|
/* addr contains address of the last valid ate in the most recent sector
|
|
* search for the first ate containing all cells erased, in the process
|
|
* also update fs->data_wra.
|
|
*/
|
|
fs->ate_wra = addr;
|
|
fs->data_wra = addr & ADDR_SECT_MASK;
|
|
|
|
while (fs->ate_wra >= fs->data_wra) {
|
|
rc = nvs_flash_ate_rd(fs, fs->ate_wra, &last_ate);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
|
|
rc = nvs_ate_cmp_const(&last_ate, erase_value);
|
|
|
|
if (!rc) {
|
|
/* found ff empty location */
|
|
break;
|
|
}
|
|
|
|
if (nvs_ate_valid(fs, &last_ate)) {
|
|
/* complete write of ate was performed */
|
|
fs->data_wra = addr & ADDR_SECT_MASK;
|
|
/* Align the data write address to the current
|
|
* write block size so that it is possible to write to
|
|
* the sector even if the block size has changed after
|
|
* a software upgrade (unless the physical ATE size
|
|
* will change)."
|
|
*/
|
|
fs->data_wra += nvs_al_size(fs, last_ate.offset + last_ate.len);
|
|
|
|
/* ate on the last position within the sector is
|
|
* reserved for deletion an entry
|
|
*/
|
|
if (fs->ate_wra == fs->data_wra && last_ate.len) {
|
|
/* not a delete ate */
|
|
rc = -ESPIPE;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
fs->ate_wra -= ate_size;
|
|
}
|
|
|
|
/* if the sector after the write sector is not empty gc was interrupted
|
|
* we might need to restart gc if it has not yet finished. Otherwise
|
|
* just erase the sector.
|
|
* When gc needs to be restarted, first erase the sector otherwise the
|
|
* data might not fit into the sector.
|
|
*/
|
|
addr = fs->ate_wra & ADDR_SECT_MASK;
|
|
nvs_sector_advance(fs, &addr);
|
|
rc = nvs_flash_cmp_const(fs, addr, erase_value, fs->sector_size);
|
|
if (rc < 0) {
|
|
goto end;
|
|
}
|
|
if (rc) {
|
|
/* the sector after fs->ate_wrt is not empty, look for a marker
|
|
* (gc_done_ate) that indicates that gc was finished.
|
|
*/
|
|
bool gc_done_marker = false;
|
|
struct nvs_ate gc_done_ate;
|
|
|
|
addr = fs->ate_wra + ate_size;
|
|
while ((addr & ADDR_OFFS_MASK) < (fs->sector_size - ate_size)) {
|
|
rc = nvs_flash_ate_rd(fs, addr, &gc_done_ate);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
if (nvs_ate_valid(fs, &gc_done_ate) &&
|
|
(gc_done_ate.id == 0xffff) &&
|
|
(gc_done_ate.len == 0U)) {
|
|
gc_done_marker = true;
|
|
break;
|
|
}
|
|
addr += ate_size;
|
|
}
|
|
|
|
if (gc_done_marker) {
|
|
/* erase the next sector */
|
|
LOG_INF("GC Done marker found");
|
|
addr = fs->ate_wra & ADDR_SECT_MASK;
|
|
nvs_sector_advance(fs, &addr);
|
|
rc = nvs_flash_erase_sector(fs, addr);
|
|
goto end;
|
|
}
|
|
LOG_INF("No GC Done marker found: restarting gc");
|
|
rc = nvs_flash_erase_sector(fs, fs->ate_wra);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
fs->ate_wra &= ADDR_SECT_MASK;
|
|
fs->ate_wra += (fs->sector_size - 2 * ate_size);
|
|
fs->data_wra = (fs->ate_wra & ADDR_SECT_MASK);
|
|
rc = nvs_gc(fs);
|
|
goto end;
|
|
}
|
|
|
|
/* possible data write after last ate write, update data_wra */
|
|
while (fs->ate_wra > fs->data_wra) {
|
|
empty_len = fs->ate_wra - fs->data_wra;
|
|
|
|
rc = nvs_flash_cmp_const(fs, fs->data_wra, erase_value,
|
|
empty_len);
|
|
if (rc < 0) {
|
|
goto end;
|
|
}
|
|
if (!rc) {
|
|
break;
|
|
}
|
|
|
|
fs->data_wra += fs->flash_parameters->write_block_size;
|
|
}
|
|
|
|
/* If the ate_wra is pointing to the first ate write location in a
|
|
* sector and data_wra is not 0, erase the sector as it contains no
|
|
* valid data (this also avoids closing a sector without any data).
|
|
*/
|
|
if (((fs->ate_wra + 2 * ate_size) == fs->sector_size) &&
|
|
(fs->data_wra != (fs->ate_wra & ADDR_SECT_MASK))) {
|
|
rc = nvs_flash_erase_sector(fs, fs->ate_wra);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
fs->data_wra = fs->ate_wra & ADDR_SECT_MASK;
|
|
}
|
|
|
|
end:
|
|
/* If the sector is empty add a gc done ate to avoid having insufficient
|
|
* space when doing gc.
|
|
*/
|
|
if ((!rc) && ((fs->ate_wra & ADDR_OFFS_MASK) ==
|
|
(fs->sector_size - 2 * ate_size))) {
|
|
|
|
rc = nvs_add_gc_done_ate(fs);
|
|
}
|
|
k_mutex_unlock(&fs->nvs_lock);
|
|
return rc;
|
|
}
|
|
|
|
int nvs_clear(struct nvs_fs *fs)
|
|
{
|
|
int rc;
|
|
uint32_t addr;
|
|
|
|
if (!fs->ready) {
|
|
LOG_ERR("NVS not initialized");
|
|
return -EACCES;
|
|
}
|
|
|
|
for (uint16_t i = 0; i < fs->sector_count; i++) {
|
|
addr = i << ADDR_SECT_SHIFT;
|
|
rc = nvs_flash_erase_sector(fs, addr);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* nvs needs to be reinitialized after clearing */
|
|
fs->ready = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nvs_mount(struct nvs_fs *fs)
|
|
{
|
|
|
|
int rc;
|
|
struct flash_pages_info info;
|
|
size_t write_block_size;
|
|
|
|
k_mutex_init(&fs->nvs_lock);
|
|
|
|
fs->flash_parameters = flash_get_parameters(fs->flash_device);
|
|
if (fs->flash_parameters == NULL) {
|
|
LOG_ERR("Could not obtain flash parameters");
|
|
return -EINVAL;
|
|
}
|
|
|
|
write_block_size = flash_get_write_block_size(fs->flash_device);
|
|
|
|
/* check that the write block size is supported */
|
|
if (write_block_size > NVS_BLOCK_SIZE || write_block_size == 0) {
|
|
LOG_ERR("Unsupported write block size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check that sector size is a multiple of pagesize */
|
|
rc = flash_get_page_info_by_offs(fs->flash_device, fs->offset, &info);
|
|
if (rc) {
|
|
LOG_ERR("Unable to get page info");
|
|
return -EINVAL;
|
|
}
|
|
if (!fs->sector_size || fs->sector_size % info.size) {
|
|
LOG_ERR("Invalid sector size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check the number of sectors, it should be at least 2 */
|
|
if (fs->sector_count < 2) {
|
|
LOG_ERR("Configuration error - sector count");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = nvs_startup(fs);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
/* nvs is ready for use */
|
|
fs->ready = true;
|
|
|
|
LOG_INF("%d Sectors of %d bytes", fs->sector_count, fs->sector_size);
|
|
LOG_INF("alloc wra: %d, %x",
|
|
(fs->ate_wra >> ADDR_SECT_SHIFT),
|
|
(fs->ate_wra & ADDR_OFFS_MASK));
|
|
LOG_INF("data wra: %d, %x",
|
|
(fs->data_wra >> ADDR_SECT_SHIFT),
|
|
(fs->data_wra & ADDR_OFFS_MASK));
|
|
|
|
return 0;
|
|
}
|
|
|
|
ssize_t nvs_write(struct nvs_fs *fs, uint16_t id, const void *data, size_t len)
|
|
{
|
|
int rc, gc_count;
|
|
size_t ate_size, data_size;
|
|
struct nvs_ate wlk_ate;
|
|
uint32_t wlk_addr, rd_addr;
|
|
uint16_t required_space = 0U; /* no space, appropriate for delete ate */
|
|
bool prev_found = false;
|
|
|
|
if (!fs->ready) {
|
|
LOG_ERR("NVS not initialized");
|
|
return -EACCES;
|
|
}
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
data_size = nvs_al_size(fs, len);
|
|
|
|
/* The maximum data size is sector size - 4 ate
|
|
* where: 1 ate for data, 1 ate for sector close, 1 ate for gc done,
|
|
* and 1 ate to always allow a delete.
|
|
*/
|
|
if ((len > (fs->sector_size - 4 * ate_size)) ||
|
|
((len > 0) && (data == NULL))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* find latest entry with same id */
|
|
wlk_addr = fs->ate_wra;
|
|
rd_addr = wlk_addr;
|
|
|
|
while (1) {
|
|
rd_addr = wlk_addr;
|
|
rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
if ((wlk_ate.id == id) && (nvs_ate_valid(fs, &wlk_ate))) {
|
|
prev_found = true;
|
|
break;
|
|
}
|
|
if (wlk_addr == fs->ate_wra) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (prev_found) {
|
|
/* previous entry found */
|
|
rd_addr &= ADDR_SECT_MASK;
|
|
rd_addr += wlk_ate.offset;
|
|
|
|
if (len == 0) {
|
|
/* do not try to compare with empty data */
|
|
if (wlk_ate.len == 0U) {
|
|
/* skip delete entry as it is already the
|
|
* last one
|
|
*/
|
|
return 0;
|
|
}
|
|
} else if (len == wlk_ate.len) {
|
|
/* do not try to compare if lengths are not equal */
|
|
/* compare the data and if equal return 0 */
|
|
rc = nvs_flash_block_cmp(fs, rd_addr, data, len);
|
|
if (rc <= 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
} else {
|
|
/* skip delete entry for non-existing entry */
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* calculate required space if the entry contains data */
|
|
if (data_size) {
|
|
/* Leave space for delete ate */
|
|
required_space = data_size + ate_size;
|
|
}
|
|
|
|
k_mutex_lock(&fs->nvs_lock, K_FOREVER);
|
|
|
|
gc_count = 0;
|
|
while (1) {
|
|
if (gc_count == fs->sector_count) {
|
|
/* gc'ed all sectors, no extra space will be created
|
|
* by extra gc.
|
|
*/
|
|
rc = -ENOSPC;
|
|
goto end;
|
|
}
|
|
|
|
if (fs->ate_wra >= (fs->data_wra + required_space)) {
|
|
|
|
rc = nvs_flash_wrt_entry(fs, id, data, len);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
rc = nvs_sector_close(fs);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
|
|
rc = nvs_gc(fs);
|
|
if (rc) {
|
|
goto end;
|
|
}
|
|
gc_count++;
|
|
}
|
|
rc = len;
|
|
end:
|
|
k_mutex_unlock(&fs->nvs_lock);
|
|
return rc;
|
|
}
|
|
|
|
int nvs_delete(struct nvs_fs *fs, uint16_t id)
|
|
{
|
|
return nvs_write(fs, id, NULL, 0);
|
|
}
|
|
|
|
ssize_t nvs_read_hist(struct nvs_fs *fs, uint16_t id, void *data, size_t len,
|
|
uint16_t cnt)
|
|
{
|
|
int rc;
|
|
uint32_t wlk_addr, rd_addr;
|
|
uint16_t cnt_his;
|
|
struct nvs_ate wlk_ate;
|
|
size_t ate_size;
|
|
|
|
if (!fs->ready) {
|
|
LOG_ERR("NVS not initialized");
|
|
return -EACCES;
|
|
}
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
if (len > (fs->sector_size - 2 * ate_size)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
cnt_his = 0U;
|
|
|
|
wlk_addr = fs->ate_wra;
|
|
rd_addr = wlk_addr;
|
|
|
|
while (cnt_his <= cnt) {
|
|
rd_addr = wlk_addr;
|
|
rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
|
|
if (rc) {
|
|
goto err;
|
|
}
|
|
if ((wlk_ate.id == id) && (nvs_ate_valid(fs, &wlk_ate))) {
|
|
cnt_his++;
|
|
}
|
|
if (wlk_addr == fs->ate_wra) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (((wlk_addr == fs->ate_wra) && (wlk_ate.id != id)) ||
|
|
(wlk_ate.len == 0U) || (cnt_his < cnt)) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
rd_addr &= ADDR_SECT_MASK;
|
|
rd_addr += wlk_ate.offset;
|
|
rc = nvs_flash_rd(fs, rd_addr, data, MIN(len, wlk_ate.len));
|
|
if (rc) {
|
|
goto err;
|
|
}
|
|
|
|
return wlk_ate.len;
|
|
|
|
err:
|
|
return rc;
|
|
}
|
|
|
|
ssize_t nvs_read(struct nvs_fs *fs, uint16_t id, void *data, size_t len)
|
|
{
|
|
int rc;
|
|
|
|
rc = nvs_read_hist(fs, id, data, len, 0);
|
|
return rc;
|
|
}
|
|
|
|
ssize_t nvs_calc_free_space(struct nvs_fs *fs)
|
|
{
|
|
|
|
int rc;
|
|
struct nvs_ate step_ate, wlk_ate;
|
|
uint32_t step_addr, wlk_addr;
|
|
size_t ate_size, free_space;
|
|
|
|
if (!fs->ready) {
|
|
LOG_ERR("NVS not initialized");
|
|
return -EACCES;
|
|
}
|
|
|
|
ate_size = nvs_al_size(fs, sizeof(struct nvs_ate));
|
|
|
|
free_space = 0;
|
|
for (uint16_t i = 1; i < fs->sector_count; i++) {
|
|
free_space += (fs->sector_size - ate_size);
|
|
}
|
|
|
|
step_addr = fs->ate_wra;
|
|
|
|
while (1) {
|
|
rc = nvs_prev_ate(fs, &step_addr, &step_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
wlk_addr = fs->ate_wra;
|
|
|
|
while (1) {
|
|
rc = nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
if ((wlk_ate.id == step_ate.id) ||
|
|
(wlk_addr == fs->ate_wra)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((wlk_addr == step_addr) && step_ate.len &&
|
|
(nvs_ate_valid(fs, &step_ate))) {
|
|
/* count needed */
|
|
free_space -= nvs_al_size(fs, step_ate.len);
|
|
free_space -= ate_size;
|
|
}
|
|
|
|
if (step_addr == fs->ate_wra) {
|
|
break;
|
|
}
|
|
|
|
}
|
|
return free_space;
|
|
}
|