12b2ee54e3
Timer "drivers" do not use the device model infrastructure, they are singletons with a SYS_INIT call. This means they do not have to include device.h but init.h. Things worked because device.h includes init.h. Signed-off-by: Gerard Marull-Paretas <gerard@teslabs.com>
245 lines
6.6 KiB
C
245 lines
6.6 KiB
C
/*
|
|
* Copyright (c) 2023 Antmicro <www.antmicro.com>
|
|
*
|
|
* Based on:
|
|
* sam0_rtc_timer.c Copyright (c) 2018 omSquare s.r.o.
|
|
* intel_adsp_timer.c Copyright (c) 2020 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT silabs_gecko_burtc
|
|
|
|
/**
|
|
* @file
|
|
* @brief SiLabs Gecko BURTC-based sys_clock driver
|
|
*
|
|
*/
|
|
|
|
#include <zephyr/init.h>
|
|
#include <soc.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#include <zephyr/sys_clock.h>
|
|
#include <zephyr/irq.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <zephyr/logging/log.h>
|
|
|
|
#include "em_device.h"
|
|
#include "em_cmu.h"
|
|
#include "em_burtc.h"
|
|
|
|
|
|
LOG_MODULE_REGISTER(gecko_burtc_timer);
|
|
|
|
|
|
/* Maximum time interval between timer interrupts (in hw_cycles) */
|
|
#define MAX_TIMEOUT_CYC (UINT32_MAX >> 1)
|
|
|
|
/*
|
|
* Mininum time interval between now and IRQ firing that can be scheduled.
|
|
* The main cause for this is LFSYNC register update, which requires several
|
|
* LF clk cycles for synchronization.
|
|
* Seee e.g. "4.2.4.4.4 LFSYNC Registers" in "EFR32xG22 Reference Manual"
|
|
*/
|
|
#define MIN_DELAY_CYC (6u)
|
|
|
|
#define TIMER_IRQ (DT_INST_IRQN(0))
|
|
|
|
#if defined(CONFIG_TEST)
|
|
/* See tests/kernel/context */
|
|
const int32_t z_sys_timer_irq_for_test = TIMER_IRQ;
|
|
#endif
|
|
|
|
/* With CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME, that's where we
|
|
* should write hw_cycles timer clock frequency upon init
|
|
*/
|
|
extern int z_clock_hw_cycles_per_sec;
|
|
|
|
/* Number of hw_cycles clocks per 1 kernel tick */
|
|
static uint32_t g_cyc_per_tick;
|
|
|
|
/* MAX_TIMEOUT_CYC expressed as ticks */
|
|
static uint32_t g_max_timeout_ticks;
|
|
|
|
/* Value of BURTC counter when the previous kernel tick was announced */
|
|
static atomic_t g_last_count;
|
|
|
|
/* Spinlock to sync between Compare ISR and update of Compare register */
|
|
static struct k_spinlock g_lock;
|
|
|
|
/* Set to true when timer is initialized */
|
|
static bool g_init;
|
|
|
|
static void burtc_isr(const void *arg)
|
|
{
|
|
ARG_UNUSED(arg);
|
|
|
|
/* Clear the interrupt */
|
|
BURTC_IntClear(BURTC_IF_COMP);
|
|
|
|
uint32_t curr = BURTC_CounterGet();
|
|
|
|
/* NOTE: this is the only place where g_last_count is modified,
|
|
* so we don't need to do make the whole read-and-modify atomic, just
|
|
* writing it behind the memory barrier is enough
|
|
*/
|
|
uint32_t prev = atomic_get(&g_last_count);
|
|
|
|
/* How many ticks have we not announced since the last announcement */
|
|
uint32_t unannounced = (curr - prev) / g_cyc_per_tick;
|
|
|
|
atomic_set(&g_last_count, prev + unannounced * g_cyc_per_tick);
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* Counter value on which announcement should be made */
|
|
uint32_t next = prev + g_cyc_per_tick;
|
|
|
|
/* `next` can be too close in the future since we're trying to
|
|
* announce the very next tick - in that case we skip one and
|
|
* announce the one after it instead
|
|
*/
|
|
if ((next - curr) < MIN_DELAY_CYC) {
|
|
next += g_cyc_per_tick;
|
|
}
|
|
|
|
BURTC_CompareSet(0, next);
|
|
}
|
|
|
|
sys_clock_announce(unannounced);
|
|
}
|
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle)
|
|
{
|
|
ARG_UNUSED(idle);
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* calculate 'ticks' value that specifies which tick to announce,
|
|
* beginning from the closest upcoming one:
|
|
* 0 - announce upcoming tick itself
|
|
* 1 - skip upcoming one, but announce the one after it, etc.
|
|
*/
|
|
ticks = (ticks == K_TICKS_FOREVER) ? g_max_timeout_ticks : ticks;
|
|
ticks = CLAMP(ticks - 1, 0, g_max_timeout_ticks);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&g_lock);
|
|
|
|
uint32_t curr = BURTC_CounterGet();
|
|
uint32_t prev = atomic_get(&g_last_count);
|
|
|
|
/* How many ticks have we not announced since the last announcement */
|
|
uint32_t unannounced = (curr - prev) / g_cyc_per_tick;
|
|
|
|
/* Which tick to announce (counting from the last announced one) */
|
|
uint32_t to_announce = unannounced + ticks + 1;
|
|
|
|
/* Force maximum interval between announcements. If we sit without
|
|
* announcements for too long, counter will roll over and we'll lose
|
|
* track of unannounced ticks.
|
|
*/
|
|
to_announce = MIN(to_announce, g_max_timeout_ticks);
|
|
|
|
/* Counter value on which announcement should be made */
|
|
uint32_t next = prev + to_announce * g_cyc_per_tick;
|
|
|
|
/* `next` can be too close in the future if we're trying to announce
|
|
* the very next tick - in that case we skip one and announce the one
|
|
* after it instead
|
|
*/
|
|
if ((next - curr) < MIN_DELAY_CYC) {
|
|
next += g_cyc_per_tick;
|
|
}
|
|
|
|
BURTC_CompareSet(0, next);
|
|
k_spin_unlock(&g_lock, key);
|
|
}
|
|
|
|
uint32_t sys_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL) || !g_init) {
|
|
return 0;
|
|
} else {
|
|
return (BURTC_CounterGet() - g_last_count) / g_cyc_per_tick;
|
|
}
|
|
}
|
|
|
|
uint32_t sys_clock_cycle_get_32(void)
|
|
{
|
|
/* API note: this function is unrelated to kernel ticks, it returns
|
|
* a value of some 32-bit hw_cycles counter which counts with
|
|
* z_clock_hw_cycles_per_sec frequency
|
|
*/
|
|
if (!g_init) {
|
|
return 0;
|
|
} else {
|
|
return BURTC_CounterGet();
|
|
}
|
|
}
|
|
|
|
static int burtc_init(void)
|
|
{
|
|
uint32_t hw_clock_freq;
|
|
BURTC_Init_TypeDef init = BURTC_INIT_DEFAULT;
|
|
|
|
/* Enable clock for BURTC CSRs on APB */
|
|
CMU_ClockEnable(cmuClock_BURTC, true);
|
|
|
|
/* Configure BURTC LF clocksource according to Kconfig */
|
|
#if defined(CONFIG_CMU_BURTCCLK_LFXO)
|
|
CMU_ClockSelectSet(cmuClock_BURTC, cmuSelect_LFXO);
|
|
#elif defined(CONFIG_CMU_BURTCCLK_LFRCO)
|
|
CMU_ClockSelectSet(cmuClock_BURTC, cmuSelect_LFRCO);
|
|
#elif defined(CONFIG_CMU_BURTCCLK_ULFRCO)
|
|
CMU_ClockSelectSet(cmuClock_BURTC, cmuSelect_ULFRCO);
|
|
#else
|
|
#error "Unsupported BURTC clock specified"
|
|
#endif
|
|
|
|
/* Calculate timing constants and init BURTC */
|
|
hw_clock_freq = CMU_ClockFreqGet(cmuClock_BURTC);
|
|
z_clock_hw_cycles_per_sec = hw_clock_freq;
|
|
|
|
BUILD_ASSERT(CONFIG_SYS_CLOCK_TICKS_PER_SEC > 0,
|
|
"Invalid CONFIG_SYS_CLOCK_TICKS_PER_SEC value");
|
|
g_cyc_per_tick = hw_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
|
|
|
|
__ASSERT(g_cyc_per_tick >= MIN_DELAY_CYC,
|
|
"%u cycle-long tick is too short to be scheduled "
|
|
"(min is %u). Config: SYS_CLOCK_TICKS_PER_SEC is "
|
|
"%d and timer frequency is %u",
|
|
g_cyc_per_tick, MIN_DELAY_CYC, CONFIG_SYS_CLOCK_TICKS_PER_SEC,
|
|
hw_clock_freq);
|
|
|
|
g_max_timeout_ticks = MAX_TIMEOUT_CYC / g_cyc_per_tick;
|
|
|
|
init.clkDiv = 1;
|
|
init.start = false;
|
|
BURTC_Init(&init);
|
|
g_init = true;
|
|
|
|
/* Enable compare match interrupt */
|
|
BURTC_IntClear(BURTC_IF_COMP);
|
|
BURTC_IntEnable(BURTC_IF_COMP);
|
|
NVIC_ClearPendingIRQ(TIMER_IRQ);
|
|
IRQ_CONNECT(TIMER_IRQ, DT_INST_IRQ(0, priority), burtc_isr, 0, 0);
|
|
irq_enable(TIMER_IRQ);
|
|
|
|
/* Start the timer and announce 1 kernel tick */
|
|
atomic_set(&g_last_count, 0);
|
|
BURTC_CompareSet(0, g_cyc_per_tick);
|
|
|
|
BURTC_SyncWait();
|
|
BURTC->CNT = 0;
|
|
BURTC_Start();
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(burtc_init, PRE_KERNEL_2,
|
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|