zephyr/include/sys_clock.h
Flavio Ceolin 4323243c62 sys_clock: Change function signature
__ticks_to_ms always return an unsigned value, changing the function
to reflect it.

Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
2018-12-11 14:37:10 -08:00

232 lines
5.5 KiB
C

/*
* Copyright (c) 2014-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Variables needed needed for system clock
*
*
* Declare variables used by both system timer device driver and kernel
* components that use timer functionality.
*/
#ifndef ZEPHYR_INCLUDE_SYS_CLOCK_H_
#define ZEPHYR_INCLUDE_SYS_CLOCK_H_
#include <misc/util.h>
#include <misc/dlist.h>
#ifdef __cplusplus
extern "C" {
#endif
#include <toolchain.h>
#include <zephyr/types.h>
#ifdef CONFIG_TICKLESS_KERNEL
extern int _sys_clock_always_on;
extern void _enable_sys_clock(void);
#endif
static inline int sys_clock_hw_cycles_per_sec(void)
{
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
extern int z_clock_hw_cycles_per_sec;
return z_clock_hw_cycles_per_sec;
#else
return CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#endif
}
/* Note that some systems with comparatively slow cycle counters
* experience precision loss when doing math like this. In the
* general case it is not correct that "cycles" are much faster than
* "ticks".
*/
static inline int sys_clock_hw_cycles_per_tick(void)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
return sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#else
return 1; /* Just to avoid a division by zero */
#endif
}
#if defined(CONFIG_SYS_CLOCK_EXISTS) && \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 0)
#error "SYS_CLOCK_HW_CYCLES_PER_SEC must be non-zero!"
#endif
/* number of nsec per usec */
#define NSEC_PER_USEC 1000U
/* number of microseconds per millisecond */
#define USEC_PER_MSEC 1000U
/* number of milliseconds per second */
#define MSEC_PER_SEC 1000U
/* number of microseconds per second */
#define USEC_PER_SEC ((USEC_PER_MSEC) * (MSEC_PER_SEC))
/* number of nanoseconds per second */
#define NSEC_PER_SEC ((NSEC_PER_USEC) * (USEC_PER_MSEC) * (MSEC_PER_SEC))
/* kernel clocks */
#ifdef CONFIG_SYS_CLOCK_EXISTS
/*
* If timer frequency is known at compile time, a simple (32-bit)
* tick <-> ms conversion could be used for some combinations of
* hardware timer frequency and tick rate. Otherwise precise
* (64-bit) calculations are used.
*/
#if !defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
#if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC) != 0
#define _NEED_PRECISE_TICK_MS_CONVERSION
#elif (MSEC_PER_SEC % CONFIG_SYS_CLOCK_TICKS_PER_SEC) != 0
#define _NON_OPTIMIZED_TICKS_PER_SEC
#endif
#endif
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) || \
defined(_NON_OPTIMIZED_TICKS_PER_SEC)
#define _NEED_PRECISE_TICK_MS_CONVERSION
#endif
#endif
static ALWAYS_INLINE s32_t _ms_to_ticks(s32_t ms)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
#ifdef _NEED_PRECISE_TICK_MS_CONVERSION
/* use 64-bit math to keep precision */
return (s32_t)ceiling_fraction(
(s64_t)ms * sys_clock_hw_cycles_per_sec(),
((s64_t)MSEC_PER_SEC * sys_clock_hw_cycles_per_sec()) /
CONFIG_SYS_CLOCK_TICKS_PER_SEC);
#else
/* simple division keeps precision */
s32_t ms_per_tick = MSEC_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
return (s32_t)ceiling_fraction(ms, ms_per_tick);
#endif
#else
__ASSERT(ms == 0, "ms not zero");
return 0;
#endif
}
static inline u64_t __ticks_to_ms(s64_t ticks)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
#ifdef _NEED_PRECISE_TICK_MS_CONVERSION
/* use 64-bit math to keep precision */
return (u64_t)ticks * MSEC_PER_SEC / (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#else
/* simple multiplication keeps precision */
return (u64_t)ticks * MSEC_PER_SEC / (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#endif
#else
__ASSERT(ticks == 0, "ticks not zero");
return 0ULL;
#endif
}
/* added tick needed to account for tick in progress */
#define _TICK_ALIGN 1
/* SYS_CLOCK_HW_CYCLES_TO_NS64 converts CPU clock cycles to nanoseconds */
#define SYS_CLOCK_HW_CYCLES_TO_NS64(X) \
(((u64_t)(X) * NSEC_PER_SEC) / sys_clock_hw_cycles_per_sec())
/*
* SYS_CLOCK_HW_CYCLES_TO_NS_AVG converts CPU clock cycles to nanoseconds
* and calculates the average cycle time
*/
#define SYS_CLOCK_HW_CYCLES_TO_NS_AVG(X, NCYCLES) \
(u32_t)(SYS_CLOCK_HW_CYCLES_TO_NS64(X) / NCYCLES)
/**
* @defgroup clock_apis Kernel Clock APIs
* @ingroup kernel_apis
* @{
*/
/**
* @brief Compute nanoseconds from hardware clock cycles.
*
* This macro converts a time duration expressed in hardware clock cycles
* to the equivalent duration expressed in nanoseconds.
*
* @param X Duration in hardware clock cycles.
*
* @return Duration in nanoseconds.
*/
#define SYS_CLOCK_HW_CYCLES_TO_NS(X) (u32_t)(SYS_CLOCK_HW_CYCLES_TO_NS64(X))
/**
* @} end defgroup clock_apis
*/
/**
*
* @brief Return the lower part of the current system tick count
*
* @return the current system tick count
*
*/
u32_t z_tick_get_32(void);
/**
*
* @brief Return the current system tick count
*
* @return the current system tick count
*
*/
s64_t z_tick_get(void);
#ifndef CONFIG_SYS_CLOCK_EXISTS
#define z_tick_get() (0)
#define z_tick_get_32() (0)
#endif
/* timeouts */
struct _timeout;
typedef void (*_timeout_func_t)(struct _timeout *t);
struct _timeout {
sys_dnode_t node;
s32_t dticks;
_timeout_func_t fn;
};
/*
* Number of ticks for x seconds. NOTE: With MSEC() or USEC(),
* since it does an integer division, x must be greater or equal to
* 1000/CONFIG_SYS_CLOCK_TICKS_PER_SEC to get a non-zero value.
* You may want to raise CONFIG_SYS_CLOCK_TICKS_PER_SEC depending on
* your requirements.
*/
#define SECONDS(x) ((x) * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MSEC(x) (SECONDS(x) / MSEC_PER_SEC)
#define USEC(x) (MSEC(x) / USEC_PER_MSEC)
#ifdef __cplusplus
}
#endif
#endif /* ZEPHYR_INCLUDE_SYS_CLOCK_H_ */