zephyr/drivers/clock_control/clock_control_mchp_xec.c
Gerard Marull-Paretas 9c961571a2 modules: cmsis: move glue code to modules/cmsis
The CMSIS module glue code was part of arch/ directory. Move it to
modules/cmsis, and provide a single entry point for it: cmsis_core.h.
This entry header will include the right CMSIS header (M or A/R).

To make this change possible, CMSIS module Kconfig/CMake are declared as
external, allowing us to add a new Zephyr include directory.

All files including CMSIS have been updated.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2023-08-24 13:20:21 +02:00

1099 lines
32 KiB
C

/*
* Copyright (c) 2021 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_pcr
#include <soc.h>
#include <zephyr/arch/cpu.h>
#include <cmsis_core.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/dt-bindings/clock/mchp_xec_pcr.h>
#include <zephyr/irq.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/barrier.h>
LOG_MODULE_REGISTER(clock_control_xec, LOG_LEVEL_ERR);
#define CLK32K_SIL_OSC_DELAY 256
#define CLK32K_PLL_LOCK_WAIT (16 * 1024)
#define CLK32K_PIN_WAIT 4096
#define CLK32K_XTAL_WAIT (16 * 1024)
#define CLK32K_XTAL_MON_WAIT (64 * 1024)
#define XEC_CC_DFLT_PLL_LOCK_WAIT_MS 30
/*
* Counter checks:
* 32KHz period counter minimum for pass/fail: 16-bit
* 32KHz period counter maximum for pass/fail: 16-bit
* 32KHz duty cycle variation max for pass/fail: 16-bit
* 32KHz valid count minimum: 8-bit
*
* 32768 Hz period is 30.518 us
* HW count resolution is 48 MHz.
* One 32KHz clock pulse = 1464.84 48 MHz counts.
*/
#define CNT32K_TMIN 1435
#define CNT32K_TMAX 1495
#define CNT32K_DUTY_MAX 132
#define CNT32K_VAL_MIN 4
#define DEST_PLL 0
#define DEST_PERIPH 1
#define CLK32K_FLAG_CRYSTAL_SE BIT(0)
#define CLK32K_FLAG_PIN_FB_CRYSTAL BIT(1)
#define PCR_PERIPH_RESET_SPIN 8u
#define XEC_CC_XTAL_EN_DELAY_MS_DFLT 300u
#define HIBTIMER_MS_TO_CNT(x) ((uint32_t)(x) * 33U)
#define HIBTIMER_10_MS 328u
#define HIBTIMER_300_MS 9830u
enum pll_clk32k_src {
PLL_CLK32K_SRC_SO = MCHP_XEC_PLL_CLK32K_SRC_SIL_OSC,
PLL_CLK32K_SRC_XTAL = MCHP_XEC_PLL_CLK32K_SRC_XTAL,
PLL_CLK32K_SRC_PIN = MCHP_XEC_PLL_CLK32K_SRC_PIN,
PLL_CLK32K_SRC_MAX,
};
enum periph_clk32k_src {
PERIPH_CLK32K_SRC_SO_SO = MCHP_XEC_PERIPH_CLK32K_SRC_SO_SO,
PERIPH_CLK32K_SRC_XTAL_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_XTAL_XTAL,
PERIPH_CLK32K_SRC_PIN_SO = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_SO,
PERIPH_CLK32K_SRC_PIN_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_XTAL,
PERIPH_CLK32K_SRC_MAX
};
enum clk32k_dest { CLK32K_DEST_PLL = 0, CLK32K_DEST_PERIPH, CLK32K_DEST_MAX };
/* PCR hardware registers for MEC15xx and MEC172x */
#define XEC_CC_PCR_MAX_SCR 5
struct pcr_hw_regs {
volatile uint32_t SYS_SLP_CTRL;
volatile uint32_t PROC_CLK_CTRL;
volatile uint32_t SLOW_CLK_CTRL;
volatile uint32_t OSC_ID;
volatile uint32_t PWR_RST_STS;
volatile uint32_t PWR_RST_CTRL;
volatile uint32_t SYS_RST;
volatile uint32_t TURBO_CLK; /* MEC172x only */
volatile uint32_t TEST20;
uint32_t RSVD1[3];
volatile uint32_t SLP_EN[XEC_CC_PCR_MAX_SCR];
uint32_t RSVD2[3];
volatile uint32_t CLK_REQ[XEC_CC_PCR_MAX_SCR];
uint32_t RSVD3[3];
volatile uint32_t RST_EN[5];
volatile uint32_t RST_EN_LOCK;
/* all registers below are MEC172x only */
volatile uint32_t VBAT_SRST;
volatile uint32_t CLK32K_SRC_VTR;
volatile uint32_t TEST90;
uint32_t RSVD4[(0x00c0 - 0x0094) / 4];
volatile uint32_t CNT32K_PER;
volatile uint32_t CNT32K_PULSE_HI;
volatile uint32_t CNT32K_PER_MIN;
volatile uint32_t CNT32K_PER_MAX;
volatile uint32_t CNT32K_DV;
volatile uint32_t CNT32K_DV_MAX;
volatile uint32_t CNT32K_VALID;
volatile uint32_t CNT32K_VALID_MIN;
volatile uint32_t CNT32K_CTRL;
volatile uint32_t CLK32K_MON_ISTS;
volatile uint32_t CLK32K_MON_IEN;
};
#define XEC_CC_PCR_RST_EN_UNLOCK 0xa6382d4cu
#define XEC_CC_PCR_RST_EN_LOCK 0xa6382d4du
#define XEC_CC_PCR_OSC_ID_PLL_LOCK BIT(8)
#define XEC_CC_PCR_TURBO_CLK_96M BIT(2)
#define XEC_CC_PCR_CLK32K_SRC_MSK 0x3u
#define XEC_CC_PCR_CLK32K_SRC_SIL 0u
#define XEC_CC_PCR_CLK32K_SRC_XTAL 1
#define XEC_CC_PCR_CLK32K_SRC_PIN 2
#define XEC_CC_PCR_CLK32K_SRC_OFF 3
#ifdef CONFIG_SOC_SERIES_MEC1501X
#define XEC_CC_PCR3_CRYPTO_MASK (BIT(26) | BIT(27) | BIT(28))
#else
#define XEC_CC_PCR3_CRYPTO_MASK BIT(26)
#endif
/* VBAT powered hardware registers related to clock configuration */
struct vbatr_hw_regs {
volatile uint32_t PFRS;
uint32_t RSVD1[1];
volatile uint32_t CLK32_SRC;
uint32_t RSVD2[2];
volatile uint32_t CLK32_TRIM;
uint32_t RSVD3[1];
volatile uint32_t CLK32_TRIM_CTRL;
};
/* MEC152x VBAT CLK32_SRC register defines */
#define XEC_CC15_VBATR_USE_SIL_OSC 0u
#define XEC_CC15_VBATR_USE_32KIN_PIN BIT(1)
#define XEC_CC15_VBATR_USE_PAR_CRYSTAL BIT(2)
#define XEC_CC15_VBATR_USE_SE_CRYSTAL (BIT(2) | BIT(3))
/* MEC150x special requirements */
#define XEC_CC15_GCFG_DID_DEV_ID_MEC150x 0x0020U
#define XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR 0x06U
/* MEC172x VBAT CLK32_SRC register defines */
#define XEC_CC_VBATR_CS_SO_EN BIT(0) /* enable and start silicon OSC */
#define XEC_CC_VBATR_CS_XTAL_EN BIT(8) /* enable & start external crystal */
#define XEC_CC_VBATR_CS_XTAL_SE BIT(9) /* crystal XTAL2 used as 32KHz input */
#define XEC_CC_VBATR_CS_XTAL_DHC BIT(10) /* disable high XTAL startup current */
#define XEC_CC_VBATR_CS_XTAL_CNTR_MSK 0x1800u /* XTAL amplifier gain control */
#define XEC_CC_VBATR_CS_XTAL_CNTR_DG 0x0800u
#define XEC_CC_VBATR_CS_XTAL_CNTR_RG 0x1000u
#define XEC_CC_VBATR_CS_XTAL_CNTR_MG 0x1800u
/* MEC172x Select source of peripheral 32KHz clock */
#define XEC_CC_VBATR_CS_PCS_POS 16
#define XEC_CC_VBATR_CS_PCS_MSK0 0x3u
#define XEC_CC_VBATR_CS_PCS_MSK 0x30000u
#define XEC_CC_VBATR_CS_PCS_VTR_VBAT_SO 0u /* VTR & VBAT use silicon OSC */
#define XEC_CC_VBATR_CS_PCS_VTR_VBAT_XTAL 0x10000u /* VTR & VBAT use crystal */
#define XEC_CC_VBATR_CS_PCS_VTR_PIN_SO 0x20000u /* VTR 32KHZ_IN, VBAT silicon OSC */
#define XEC_CC_VBATR_CS_PCS_VTR_PIN_XTAL 0x30000u /* VTR 32KHZ_IN, VBAT XTAL */
#define XEC_CC_VBATR_CS_DI32_VTR_OFF BIT(18) /* disable silicon OSC when VTR off */
enum vbr_clk32k_src {
VBR_CLK32K_SRC_SO_SO = 0,
VBR_CLK32K_SRC_XTAL_XTAL,
VBR_CLK32K_SRC_PIN_SO,
VBR_CLK32K_SRC_PIN_XTAL,
VBR_CLK32K_SRC_MAX,
};
/* GIRQ23 hardware registers */
#define XEC_CC_HTMR_0_GIRQ23_POS 16
/* Driver config */
struct xec_pcr_config {
uintptr_t pcr_base;
uintptr_t vbr_base;
const struct pinctrl_dev_config *pcfg;
uint16_t xtal_enable_delay_ms;
uint16_t pll_lock_timeout_ms;
uint16_t period_min; /* mix and max 32KHz period range */
uint16_t period_max; /* monitor values in units of 48MHz (20.8 ns) */
uint8_t core_clk_div; /* Cortex-M4 clock divider (CPU and NVIC) */
uint8_t xtal_se; /* External 32KHz square wave on XTAL2 pin */
uint8_t max_dc_va; /* 32KHz monitor maximum duty cycle variation */
uint8_t min_valid; /* minimum number of valid consecutive 32KHz pulses */
enum pll_clk32k_src pll_src;
enum periph_clk32k_src periph_src;
uint8_t clkmon_bypass;
uint8_t dis_internal_osc;
};
/*
* Make sure PCR sleep enables are clear except for crypto
* which do not have internal clock gating.
*/
static void pcr_slp_init(struct pcr_hw_regs *pcr)
{
pcr->SYS_SLP_CTRL = 0U;
SCB->SCR &= ~BIT(2);
for (int i = 0; i < XEC_CC_PCR_MAX_SCR; i++) {
pcr->SLP_EN[i] = 0U;
}
pcr->SLP_EN[3] = XEC_CC_PCR3_CRYPTO_MASK;
}
/* MEC172x:
* Check if PLL is locked with timeout provided by a peripheral clock domain
* timer. We assume peripheral domain is still using internal silicon OSC as
* its reference clock. Available peripheral timers using 32KHz are:
* RTOS timer, hibernation timers, RTC, and week timer. We will use hibernation
* timer 0 in 30.5 us tick mode. Maximum internal is 2 seconds.
* A timer count value of 0 is interpreted as no timeout.
* We use the hibernation timer GIRQ interrupt status bit instead of reading
* the timer's count register due to race condition of HW taking at least
* one 32KHz cycle to move pre-load into count register.
* MEC15xx:
* Hibernation timer is using the chosen 32KHz source. If the external 32KHz source
* has a ramp up time, we make not get an accurate delay. This may only occur for
* the parallel crystal.
*/
static int pll_wait_lock_periph(struct pcr_hw_regs *const pcr, uint16_t ms)
{
struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0));
struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23));
uint32_t hcount = HIBTIMER_MS_TO_CNT(ms);
int rc = 0;
htmr0->PRLD = 0; /* disable */
htmr0->CTRL = 0; /* 30.5 us units */
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
htmr0->PRLD = hcount;
while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) {
if (hcount) {
if (girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) {
rc = -ETIMEDOUT;
}
}
}
return rc;
}
static int periph_clk_src_using_pin(enum periph_clk32k_src src)
{
switch (src) {
case PERIPH_CLK32K_SRC_PIN_SO:
case PERIPH_CLK32K_SRC_PIN_XTAL:
return 1;
default:
return 0;
}
}
#ifdef CONFIG_SOC_SERIES_MEC1501X
/* MEC15xx uses the same 32KHz source for both PLL and Peripheral 32K clock domains.
* We ignore the peripheral clock source.
* If XTAL is selected (parallel) or single-ended the external 32KHz MUST stay on
* even when when VTR goes off.
* If PIN(32KHZ_IN pin) as the external source, hardware can auto-switch to internal
* silicon OSC if the signal on the 32KHZ_PIN goes away.
* We ignore th
*/
static int soc_clk32_init(const struct device *dev,
enum pll_clk32k_src pll_clk_src,
enum periph_clk32k_src periph_clk_src,
uint32_t flags)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
uint32_t cken = 0U;
int rc = 0;
if (MCHP_DEVICE_ID() == XEC_CC15_GCFG_DID_DEV_ID_MEC150x) {
if (MCHP_REVISION_ID() == MCHP_GCFG_REV_B0) {
vbr->CLK32_TRIM_CTRL = XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR;
}
}
switch (pll_clk_src) {
case PLL_CLK32K_SRC_SO:
cken = XEC_CC15_VBATR_USE_SIL_OSC;
break;
case PLL_CLK32K_SRC_XTAL:
if (flags & CLK32K_FLAG_CRYSTAL_SE) {
cken = XEC_CC15_VBATR_USE_SE_CRYSTAL;
} else {
cken = XEC_CC15_VBATR_USE_PAR_CRYSTAL;
}
break;
case PLL_CLK32K_SRC_PIN: /* 32KHZ_IN pin falls back to Silicon OSC */
cken = XEC_CC15_VBATR_USE_32KIN_PIN;
break;
default: /* do not touch HW */
return -EINVAL;
}
if ((vbr->CLK32_SRC & 0xffU) != cken) {
vbr->CLK32_SRC = cken;
}
rc = pll_wait_lock_periph(pcr, devcfg->xtal_enable_delay_ms);
return rc;
}
#else
static int periph_clk_src_using_si(enum periph_clk32k_src src)
{
switch (src) {
case PERIPH_CLK32K_SRC_SO_SO:
case PERIPH_CLK32K_SRC_PIN_SO:
return 1;
default:
return 0;
}
}
static int periph_clk_src_using_xtal(enum periph_clk32k_src src)
{
switch (src) {
case PERIPH_CLK32K_SRC_XTAL_XTAL:
case PERIPH_CLK32K_SRC_PIN_XTAL:
return 1;
default:
return 0;
}
}
static bool is_sil_osc_enabled(struct vbatr_hw_regs *vbr)
{
if (vbr->CLK32_SRC & XEC_CC_VBATR_CS_SO_EN) {
return true;
}
return false;
}
static void enable_sil_osc(struct vbatr_hw_regs *vbr)
{
vbr->CLK32_SRC |= XEC_CC_VBATR_CS_SO_EN;
}
/* In early Zephyr initialization we don't have timer services. Also, the SoC
* may be running on its ring oscillator (+/- 50% accuracy). Configuring the
* SoC's clock subsystem requires wait/delays. We implement a simple delay
* by writing to a read-only hardware register in the PCR block.
*/
static uint32_t spin_delay(struct pcr_hw_regs *pcr, uint32_t cnt)
{
uint32_t n;
for (n = 0U; n < cnt; n++) {
pcr->OSC_ID = n;
}
return n;
}
/*
* This routine checks if the PLL is locked to its input source. Minimum lock
* time is 3.3 ms. Lock time can be larger when the source is an external
* crystal. Crystal cold start times may vary greatly based on many factors.
* Crystals do not like being power cycled.
*/
static int pll_wait_lock(struct pcr_hw_regs *const pcr, uint32_t wait_cnt)
{
while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) {
if (wait_cnt == 0) {
return -ETIMEDOUT;
}
--wait_cnt;
}
return 0;
}
/* caller has enabled internal silicon 32 KHz oscillator */
static void hib_timer_delay(uint32_t hib_timer_count)
{
struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0));
struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23));
uint32_t hcnt;
while (hib_timer_count) {
hcnt = hib_timer_count;
if (hcnt > UINT16_MAX) {
hcnt -= UINT16_MAX;
}
htmr0->PRLD = 0; /* disable */
while (htmr0->PRLD != 0) {
;
}
htmr0->CTRL = 0; /* 32k time base */
/* clear hibernation timer 0 status */
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
htmr0->PRLD = hib_timer_count;
if (hib_timer_count == 0) {
return;
}
while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) {
;
}
htmr0->PRLD = 0; /* disable */
while (htmr0->PRLD != 0) {
;
}
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
hib_timer_count -= hcnt;
}
}
/* Turn off crystal when we are not using it */
static int disable_32k_crystal(const struct device *dev)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
uint32_t vbcs = vbr->CLK32_SRC;
vbcs &= ~(XEC_CC_VBATR_CS_XTAL_EN | XEC_CC_VBATR_CS_XTAL_SE | XEC_CC_VBATR_CS_XTAL_DHC);
vbr->CLK32_SRC = vbcs;
return 0;
}
/*
* Start external 32 KHz crystal.
* Assumes peripheral clocks source is Silicon OSC.
* If current configuration matches desired crystal configuration do nothing.
* NOTE: Crystal requires ~300 ms to stabilize.
*/
static int enable_32k_crystal(const struct device *dev, uint32_t flags)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
uint32_t vbcs = vbr->CLK32_SRC;
uint32_t cfg = MCHP_VBATR_CS_XTAL_EN;
if (flags & CLK32K_FLAG_CRYSTAL_SE) {
cfg |= MCHP_VBATR_CS_XTAL_SE;
}
if ((vbcs & cfg) == cfg) {
return 0;
}
/* Configure crystal connection before enabling the crystal. */
vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_SE | MCHP_VBATR_CS_XTAL_DHC |
MCHP_VBATR_CS_XTAL_CNTR_MSK);
if (flags & CLK32K_FLAG_CRYSTAL_SE) {
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_SE;
}
/* Set crystal gain */
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_CNTR_DG;
/* enable crystal */
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_EN;
/* wait for crystal stabilization */
hib_timer_delay(HIBTIMER_MS_TO_CNT(devcfg->xtal_enable_delay_ms));
/* turn off crystal high startup current */
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_DHC;
return 0;
}
/*
* Use PCR clock monitor hardware to test crystal output.
* Requires crystal to have stabilized after enable.
* When enabled the clock monitor hardware measures high/low, edges, and
* duty cycle and compares to programmed limits.
*/
static int check_32k_crystal(const struct device *dev)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0));
struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23));
uint32_t status = 0;
int rc = 0;
htmr0->PRLD = 0;
htmr0->CTRL = 0;
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
pcr->CNT32K_CTRL = 0U;
pcr->CLK32K_MON_IEN = 0U;
pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK;
pcr->CNT32K_PER_MIN = devcfg->period_min;
pcr->CNT32K_PER_MAX = devcfg->period_max;
pcr->CNT32K_DV_MAX = devcfg->max_dc_va;
pcr->CNT32K_VALID_MIN = devcfg->min_valid;
pcr->CNT32K_CTRL =
MCHP_PCR_CLK32M_CTRL_PER_EN | MCHP_PCR_CLK32M_CTRL_DC_EN |
MCHP_PCR_CLK32M_CTRL_VAL_EN | MCHP_PCR_CLK32M_CTRL_CLR_CNT;
rc = -ETIMEDOUT;
htmr0->PRLD = HIBTIMER_10_MS;
status = pcr->CLK32K_MON_ISTS;
while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) {
if (status == (MCHP_PCR_CLK32M_ISTS_PULSE_RDY |
MCHP_PCR_CLK32M_ISTS_PASS_PER |
MCHP_PCR_CLK32M_ISTS_PASS_DC |
MCHP_PCR_CLK32M_ISTS_VALID)) {
rc = 0;
break;
}
if (status & (MCHP_PCR_CLK32M_ISTS_FAIL |
MCHP_PCR_CLK32M_ISTS_STALL)) {
rc = -EBUSY;
break;
}
status = pcr->CLK32K_MON_ISTS;
}
pcr->CNT32K_CTRL = 0u;
htmr0->PRLD = 0;
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS);
return rc;
}
/*
* Set the clock source for either PLL or Peripheral-32K clock domain.
* The source must be a stable 32 KHz input: internal silicon oscillator,
* external crystal dual-ended crystal, 50% duty cycle waveform on XTAL2 only,
* or a 50% duty cycles waveform on the 32KHZ_PIN.
* NOTE: 32KHZ_PIN is an alternate function of a chip specific GPIO.
* Signal on 32KHZ_PIN may go off when VTR rail go down. MEC172x can automatically
* switch to silicon OSC or XTAL. At this time we do not support fall back to XTAL
* when using 32KHZ_PIN.
* !!! IMPORTANT !!! Fall back from 32KHZ_PIN to SO/XTAL is only for the Peripheral
* Clock domain. If the PLL is configured to use 32KHZ_PIN as its source then the
* PLL will shutdown and the PLL clock domain should switch to the ring oscillator.
* This means the PLL clock domain clock will not longer be accurate and may cause
* FW malfunction(s).
*/
static void connect_pll_32k(const struct device *dev, enum pll_clk32k_src src, uint32_t flags)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
uint32_t pcr_clk_sel;
switch (src) {
case PLL_CLK32K_SRC_XTAL:
pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_XTAL;
break;
case PLL_CLK32K_SRC_PIN:
pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_PIN;
break;
default: /* default to silicon OSC */
pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_SILOSC;
break;
}
pcr->CLK32K_SRC_VTR = pcr_clk_sel;
}
static void connect_periph_32k(const struct device *dev, enum periph_clk32k_src src, uint32_t flags)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
uint32_t vbr_clk_sel = vbr->CLK32_SRC & ~(MCHP_VBATR_CS_PCS_MSK);
switch (src) {
case PERIPH_CLK32K_SRC_XTAL_XTAL:
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_XTAL;
break;
case PERIPH_CLK32K_SRC_PIN_SO:
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_SO;
break;
case PERIPH_CLK32K_SRC_PIN_XTAL:
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_XTAL;
break;
default: /* default to silicon OSC for VTR/VBAT */
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_SO;
break;
}
vbr->CLK32_SRC = vbr_clk_sel;
}
/* two bit field in PCR VTR 32KHz source register */
enum pll_clk32k_src get_pll_32k_source(const struct device *dev)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
enum pll_clk32k_src src = PLL_CLK32K_SRC_MAX;
switch (pcr->CLK32K_SRC_VTR & XEC_CC_PCR_CLK32K_SRC_MSK) {
case XEC_CC_PCR_CLK32K_SRC_SIL:
src = PLL_CLK32K_SRC_SO;
break;
case XEC_CC_PCR_CLK32K_SRC_XTAL:
src = PLL_CLK32K_SRC_XTAL;
break;
case XEC_CC_PCR_CLK32K_SRC_PIN:
src = PLL_CLK32K_SRC_PIN;
break;
default:
src = PLL_CLK32K_SRC_MAX;
break;
}
return src;
}
/* two bit field in VBAT source 32KHz register */
enum periph_clk32k_src get_periph_32k_source(const struct device *dev)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
enum periph_clk32k_src src = PERIPH_CLK32K_SRC_MAX;
uint32_t temp;
temp = (vbr->CLK32_SRC & XEC_CC_VBATR_CS_PCS_MSK) >> XEC_CC_VBATR_CS_PCS_POS;
if (temp == VBR_CLK32K_SRC_SO_SO) {
src = PERIPH_CLK32K_SRC_SO_SO;
} else if (temp == VBR_CLK32K_SRC_XTAL_XTAL) {
src = PERIPH_CLK32K_SRC_XTAL_XTAL;
} else if (temp == VBR_CLK32K_SRC_PIN_SO) {
src = PERIPH_CLK32K_SRC_PIN_SO;
} else {
src = PERIPH_CLK32K_SRC_PIN_XTAL;
}
return src;
}
/*
* MEC172x has two 32 KHz clock domains
* PLL domain: 32 KHz clock input for PLL to produce 96 MHz and 48 MHz clocks
* Peripheral domain: 32 KHz clock for subset of peripherals.
* Each domain 32 KHz clock input can be from one of the following sources:
* Internal Silicon oscillator: +/- 2%
* External Crystal connected as parallel or single ended
* External 32KHZ_PIN 50% duty cycle waveform with fall back to either
* Silicon OSC or crystal when 32KHZ_PIN signal goes away or VTR power rail
* goes off.
* At chip reset the PLL is held in reset and the +/- 50% ring oscillator is
* the main clock.
* If no VBAT reset occurs the VBAT 32 KHz source register maintains its state.
*/
static int soc_clk32_init(const struct device *dev,
enum pll_clk32k_src pll_src,
enum periph_clk32k_src periph_src,
uint32_t flags)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base;
int rc = 0;
/* disable PCR 32K monitor and clear counters */
pcr->CNT32K_CTRL = MCHP_PCR_CLK32M_CTRL_CLR_CNT;
pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK;
pcr->CLK32K_MON_IEN = 0;
if (!is_sil_osc_enabled(vbr)) {
enable_sil_osc(vbr);
spin_delay(pcr, CLK32K_SIL_OSC_DELAY);
}
/* Default to 32KHz Silicon OSC for PLL and peripherals */
connect_pll_32k(dev, PLL_CLK32K_SRC_SO, 0);
connect_periph_32k(dev, PERIPH_CLK32K_SRC_SO_SO, 0);
rc = pll_wait_lock(pcr, CLK32K_PLL_LOCK_WAIT);
if (rc) {
LOG_ERR("XEC clock control: MEC172x lock timeout for internal 32K OSC");
return rc;
}
/* If crystal input required, enable and check. Single-ended 32KHz square wave
* on XTAL pin is also handled here.
*/
if ((pll_src == PLL_CLK32K_SRC_XTAL) || periph_clk_src_using_xtal(periph_src)) {
enable_32k_crystal(dev, flags);
if (!devcfg->clkmon_bypass) {
rc = check_32k_crystal(dev);
if (rc) {
/* disable crystal */
vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_EN);
LOG_ERR("XEC clock control: MEC172x XTAL check failed: %d", rc);
return rc;
}
}
} else {
disable_32k_crystal(dev);
}
/* Do PLL first so we can use a peripheral timer still on silicon OSC */
if (pll_src != PLL_CLK32K_SRC_SO) {
connect_pll_32k(dev, pll_src, flags);
rc = pll_wait_lock_periph(pcr, devcfg->pll_lock_timeout_ms);
}
if (periph_src != PERIPH_CLK32K_SRC_SO_SO) {
connect_periph_32k(dev, periph_src, flags);
}
/* Configuration requests disabling internal silicon OSC. */
if (devcfg->dis_internal_osc) {
if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO)
&& !periph_clk_src_using_si(get_periph_32k_source(dev))) {
vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN);
}
}
/* Configuration requests disabling internal silicon OSC. */
if (devcfg->dis_internal_osc) {
if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO)
&& !periph_clk_src_using_si(get_periph_32k_source(dev))) {
vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN);
}
}
return rc;
}
#endif
/*
* MEC172x Errata document DS80000913C
* Programming the PCR clock divider that divides the clock input to the ARM
* Cortex-M4 may cause a clock glitch. The recommended work-around is to
* issue four NOP instruction before and after the write to the PCR processor
* clock control register. The final four NOP instructions are followed by
* data and instruction barriers to flush the Cortex-M4's pipeline.
* NOTE: Zephyr provides inline functions for Cortex-Mx NOP but not for
* data and instruction barrier instructions. Caller's should only invoke this
* function with interrupts locked.
*/
static void xec_clock_control_core_clock_divider_set(uint8_t clkdiv)
{
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
arch_nop();
arch_nop();
arch_nop();
arch_nop();
pcr->PROC_CLK_CTRL = (uint32_t)clkdiv;
arch_nop();
arch_nop();
arch_nop();
arch_nop();
barrier_dsync_fence_full();
barrier_isync_fence_full();
}
/*
* PCR peripheral sleep enable allows the clocks to a specific peripheral to
* be gated off if the peripheral is not requesting a clock.
* slp_idx = zero based index into 32-bit PCR sleep enable registers.
* slp_pos = bit position in the register
* slp_en if non-zero set the bit else clear the bit
*/
int z_mchp_xec_pcr_periph_sleep(uint8_t slp_idx, uint8_t slp_pos,
uint8_t slp_en)
{
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) {
return -EINVAL;
}
if (slp_en) {
pcr->SLP_EN[slp_idx] |= BIT(slp_pos);
} else {
pcr->SLP_EN[slp_idx] &= ~BIT(slp_pos);
}
return 0;
}
/* Most peripherals have a write only reset bit in the PCR reset enable registers.
* The layout of these registers is identical to the PCR sleep enable registers.
* Reset enables are protected by a lock register.
*/
int z_mchp_xec_pcr_periph_reset(uint8_t slp_idx, uint8_t slp_pos)
{
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) {
return -EINVAL;
}
uint32_t lock = irq_lock();
pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_UNLOCK;
pcr->RST_EN[slp_idx] = BIT(slp_pos);
pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_LOCK;
irq_unlock(lock);
return 0;
}
/* clock control driver API implementation */
static int xec_cc_on(const struct device *dev,
clock_control_subsys_t sub_system,
bool turn_on)
{
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
struct mchp_xec_pcr_clk_ctrl *cc = (struct mchp_xec_pcr_clk_ctrl *)sub_system;
uint16_t pcr_idx = 0;
uint16_t bitpos = 0;
if (!cc) {
return -EINVAL;
}
switch (MCHP_XEC_CLK_SRC_GET(cc->pcr_info)) {
case MCHP_XEC_PCR_CLK_CORE:
case MCHP_XEC_PCR_CLK_BUS:
break;
case MCHP_XEC_PCR_CLK_CPU:
if (cc->pcr_info & MCHP_XEC_CLK_CPU_MASK) {
uint32_t lock = irq_lock();
xec_clock_control_core_clock_divider_set(
cc->pcr_info & MCHP_XEC_CLK_CPU_MASK);
irq_unlock(lock);
} else {
return -EINVAL;
}
break;
case MCHP_XEC_PCR_CLK_PERIPH:
case MCHP_XEC_PCR_CLK_PERIPH_FAST:
pcr_idx = MCHP_XEC_PCR_SCR_GET_IDX(cc->pcr_info);
bitpos = MCHP_XEC_PCR_SCR_GET_BITPOS(cc->pcr_info);
if (pcr_idx >= MCHP_MAX_PCR_SCR_REGS) {
return -EINVAL;
}
if (turn_on) {
pcr->SLP_EN[pcr_idx] &= ~BIT(bitpos);
} else {
pcr->SLP_EN[pcr_idx] |= BIT(bitpos);
}
break;
case MCHP_XEC_PCR_CLK_PERIPH_SLOW:
if (turn_on) {
pcr->SLOW_CLK_CTRL =
cc->pcr_info & MCHP_XEC_CLK_SLOW_MASK;
} else {
pcr->SLOW_CLK_CTRL = 0;
}
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Turn on requested clock source.
* Core, CPU, and Bus clocks are always on except in deep sleep state.
* Peripheral clocks can be gated off if the peripheral's PCR sleep enable
* is set and the peripheral indicates it does not need a clock by clearing
* its PCR CLOCK_REQ read-only status.
* Peripheral slow clock my be turned on by writing a non-zero divider value
* to its PCR control register.
*/
static int xec_clock_control_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
return xec_cc_on(dev, sub_system, true);
}
/*
* Turn off clock source.
* Core, CPU, and Bus clocks are always on except in deep sleep when PLL is
* turned off. Exception is 32 KHz clock.
* Peripheral clocks are gated off when the peripheral's sleep enable is set
* and the peripheral indicates is no longer needs a clock by de-asserting
* its read-only PCR CLOCK_REQ bit.
* Peripheral slow clock can be turned off by writing 0 to its control register.
*/
static inline int xec_clock_control_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
return xec_cc_on(dev, sub_system, false);
}
/* MEC172x and future SoC's implement a turbo clock mode where
* ARM Core, QMSPI, and PK use turbo clock. All other peripherals
* use AHB clock or the slow clock.
*/
static uint32_t get_turbo_clock(const struct device *dev)
{
#ifdef CONFIG_SOC_SERIES_MEC1501X
ARG_UNUSED(dev);
return MHZ(48);
#else
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
if (pcr->TURBO_CLK & XEC_CC_PCR_TURBO_CLK_96M) {
return MHZ(96);
}
return MHZ(48);
#endif
}
/*
* MEC172x clock subsystem:
* Two main clock domains: PLL and Peripheral-32K. Each domain's 32 KHz source
* can be selected from one of three inputs:
* internal silicon OSC +/- 2% accuracy
* external crystal connected parallel or single ended
* external 32 KHz 50% duty cycle waveform on 32KHZ_IN pin.
* PLL domain supplies 96 MHz, 48 MHz, and other high speed clocks to all
* peripherals except those in the Peripheral-32K clock domain. The slow clock
* is derived from the 48 MHz produced by the PLL.
* ARM Cortex-M4 core input: 96MHz
* AHB clock input: 48 MHz
* Fast AHB peripherals: 96 MHz internal and 48 MHz AHB interface.
* Slow clock peripherals: PWM, TACH, PROCHOT
* Peripheral-32K domain peripherals:
* WDT, RTC, RTOS timer, hibernation timers, week timer
*
* Peripherals using both PLL and 32K clock domains:
* BBLED, RPMFAN
*/
static int xec_clock_control_get_subsys_rate(const struct device *dev,
clock_control_subsys_t sub_system,
uint32_t *rate)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
uint32_t bus = (uint32_t)sub_system;
uint32_t temp = 0;
uint32_t ahb_clock = MHZ(48);
uint32_t turbo_clock = get_turbo_clock(dev);
switch (bus) {
case MCHP_XEC_PCR_CLK_CORE:
case MCHP_XEC_PCR_CLK_PERIPH_FAST:
*rate = turbo_clock;
break;
case MCHP_XEC_PCR_CLK_CPU:
/* if PCR PROC_CLK_CTRL is 0 the chip is not running */
*rate = turbo_clock / pcr->PROC_CLK_CTRL;
break;
case MCHP_XEC_PCR_CLK_BUS:
case MCHP_XEC_PCR_CLK_PERIPH:
*rate = ahb_clock;
break;
case MCHP_XEC_PCR_CLK_PERIPH_SLOW:
temp = pcr->SLOW_CLK_CTRL;
if (temp) {
*rate = ahb_clock / temp;
} else {
*rate = 0; /* slow clock off */
}
break;
default:
*rate = 0;
return -EINVAL;
}
return 0;
}
#if defined(CONFIG_PM)
void mchp_xec_clk_ctrl_sys_sleep_enable(bool is_deep)
{
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
uint32_t sys_sleep_mode = MCHP_PCR_SYS_SLP_CTRL_SLP_ALL;
if (is_deep) {
sys_sleep_mode |= MCHP_PCR_SYS_SLP_CTRL_SLP_HEAVY;
}
SCB->SCR |= BIT(2);
pcr->SYS_SLP_CTRL = sys_sleep_mode;
}
void mchp_xec_clk_ctrl_sys_sleep_disable(void)
{
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0);
pcr->SYS_SLP_CTRL = 0;
SCB->SCR &= ~BIT(2);
}
#endif
/* Clock controller driver registration */
static struct clock_control_driver_api xec_clock_control_api = {
.on = xec_clock_control_on,
.off = xec_clock_control_off,
.get_rate = xec_clock_control_get_subsys_rate,
};
static int xec_clock_control_init(const struct device *dev)
{
const struct xec_pcr_config * const devcfg = dev->config;
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base;
enum pll_clk32k_src pll_clk_src = devcfg->pll_src;
enum periph_clk32k_src periph_clk_src = devcfg->periph_src;
uint32_t clk_flags = 0U;
int rc = 0;
if (devcfg->xtal_se) {
clk_flags |= CLK32K_FLAG_CRYSTAL_SE;
}
pcr_slp_init(pcr);
rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
if ((pll_clk_src == PLL_CLK32K_SRC_PIN) || periph_clk_src_using_pin(periph_clk_src)) {
if (rc) {
LOG_ERR("XEC clock control: PINCTRL apply error %d", rc);
pll_clk_src = PLL_CLK32K_SRC_SO;
periph_clk_src = PERIPH_CLK32K_SRC_SO_SO;
clk_flags = 0U;
}
}
/* sleep used as debug */
rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
if ((rc != 0) && (rc != -ENOENT)) {
LOG_ERR("XEC clock control: PINCTRL debug apply error %d", rc);
}
rc = soc_clk32_init(dev, pll_clk_src, periph_clk_src, clk_flags);
if (rc) {
LOG_ERR("XEC clock control: init error %d", rc);
}
xec_clock_control_core_clock_divider_set(devcfg->core_clk_div);
return rc;
}
#define XEC_PLL_32K_SRC(i) \
(enum pll_clk32k_src)DT_INST_PROP_OR(i, pll_32k_src, PLL_CLK32K_SRC_SO)
#define XEC_PERIPH_32K_SRC(i) \
(enum periph_clk32k_src)DT_INST_PROP_OR(0, periph_32k_src, PERIPH_CLK32K_SRC_SO_SO)
PINCTRL_DT_INST_DEFINE(0);
const struct xec_pcr_config pcr_xec_config = {
.pcr_base = DT_INST_REG_ADDR_BY_IDX(0, 0),
.vbr_base = DT_INST_REG_ADDR_BY_IDX(0, 1),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.xtal_enable_delay_ms =
(uint16_t)DT_INST_PROP_OR(0, xtal_enable_delay_ms, XEC_CC_XTAL_EN_DELAY_MS_DFLT),
.pll_lock_timeout_ms =
(uint16_t)DT_INST_PROP_OR(0, pll_lock_timeout_ms, XEC_CC_DFLT_PLL_LOCK_WAIT_MS),
.period_min = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_min, CNT32K_TMIN),
.period_max = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_max, CNT32K_TMAX),
.core_clk_div = (uint8_t)DT_INST_PROP_OR(0, core_clk_div, CONFIG_SOC_MEC172X_PROC_CLK_DIV),
.xtal_se = (uint8_t)DT_INST_PROP_OR(0, xtal_single_ended, 0),
.max_dc_va = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_duty_cycle_var_max, CNT32K_DUTY_MAX),
.min_valid = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_valid_min, CNT32K_VAL_MIN),
.pll_src = XEC_PLL_32K_SRC(0),
.periph_src = XEC_PERIPH_32K_SRC(0),
.clkmon_bypass = (uint8_t)DT_INST_PROP_OR(0, clkmon_bypass, 0),
.dis_internal_osc = (uint8_t)DT_INST_PROP_OR(0, internal_osc_disable, 0),
};
DEVICE_DT_INST_DEFINE(0,
&xec_clock_control_init,
NULL,
NULL, &pcr_xec_config,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&xec_clock_control_api);