zephyr/scripts/footprint/size_report
Jingru Wang a3469a0497 script: add ram and rom total size to json file
It's easier and safer to parse json file rather than extract
total size from stdout

Now the .json file has two keys:
{
    "symbols": {
       "children": [
           ...
	],
       "identifier": ":",
       "name": "root",
       "size": 2220
    },
    "total_size": 34272
}

Signed-off-by: Jingru Wang <jingru@synopsys.com>
2021-04-26 14:23:13 -04:00

648 lines
22 KiB
Python
Executable file

#!/usr/bin/env python3
#
# Copyright (c) 2016, 2020 Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0
# Based on a script by:
# Chereau, Fabien <fabien.chereau@intel.com>
import argparse
import os
import sys
import re
from pathlib import Path
import json
from distutils.version import LooseVersion
import elftools
from elftools.elf.elffile import ELFFile
from elftools.elf.sections import SymbolTableSection
from elftools.dwarf.descriptions import describe_form_class
from elftools.dwarf.descriptions import (
describe_DWARF_expr, set_global_machine_arch)
from elftools.dwarf.locationlists import (
LocationExpr, LocationParser)
if LooseVersion(elftools.__version__) < LooseVersion('0.24'):
sys.exit("pyelftools is out of date, need version 0.24 or later")
from colorama import init, Fore
from anytree import RenderTree, NodeMixin, findall_by_attr
from anytree.exporter import DictExporter
# ELF section flags
SHF_WRITE = 0x1
SHF_ALLOC = 0x2
SHF_EXEC = 0x4
SHF_WRITE_ALLOC = SHF_WRITE | SHF_ALLOC
SHF_ALLOC_EXEC = SHF_ALLOC | SHF_EXEC
DT_LOCATION = re.compile(r"\(DW_OP_addr: ([0-9a-f]+)\)")
def get_symbol_addr(sym):
return sym['st_value']
def get_symbol_size(sym):
return sym['st_size']
# Given a list of start/end addresses, test if the symbol
# lies within any of these address ranges
def is_symbol_in_ranges(sym, ranges):
for bound in ranges:
if bound['start'] <= sym['st_value'] <= bound['end']:
return True
return False
# Get the bounding addresses from a DIE variable or subprogram
def get_die_mapped_address(die, parser, dwarfinfo):
low = None
high = None
if die.tag == 'DW_TAG_variable':
if 'DW_AT_location' in die.attributes:
loc_attr = die.attributes['DW_AT_location']
if parser.attribute_has_location(loc_attr, die.cu['version']):
loc = parser.parse_from_attribute(loc_attr, die.cu['version'])
if isinstance(loc, LocationExpr):
addr = describe_DWARF_expr(loc.loc_expr,
dwarfinfo.structs)
matcher = DT_LOCATION.match(addr)
if matcher:
low = int(matcher.group(1), 16)
high = low + 1
if die.tag == 'DW_TAG_subprogram':
if 'DW_AT_low_pc' in die.attributes:
low = die.attributes['DW_AT_low_pc'].value
high_pc = die.attributes['DW_AT_high_pc']
high_pc_class = describe_form_class(high_pc.form)
if high_pc_class == 'address':
high = high_pc.value
elif high_pc_class == 'constant':
high = low + high_pc.value
return low, high
# Find the symbol from a symbol list
# where it matches the address in DIE variable,
# or within the range of a DIE subprogram
def match_symbol_address(symlist, die, parser, dwarfinfo):
low, high = get_die_mapped_address(die, parser, dwarfinfo)
if low is None:
return None
for sym in symlist:
if low <= sym['symbol']['st_value'] < high:
return sym
return None
# Fetch the symbols from the symbol table and put them
# into ROM, RAM buckets
def get_symbols(elf, addr_ranges):
rom_syms = dict()
ram_syms = dict()
unassigned_syms = dict()
rom_addr_ranges = addr_ranges['rom']
ram_addr_ranges = addr_ranges['ram']
for section in elf.iter_sections():
if isinstance(section, SymbolTableSection):
for sym in section.iter_symbols():
# Ignore symbols with size == 0
if get_symbol_size(sym) == 0:
continue
found_sec = False
entry = {'name': sym.name,
'symbol': sym,
'mapped_files': set()}
# If symbol is in ROM area?
if is_symbol_in_ranges(sym, rom_addr_ranges):
if sym.name not in rom_syms:
rom_syms[sym.name] = list()
rom_syms[sym.name].append(entry)
found_sec = True
# If symbol is in RAM area?
if is_symbol_in_ranges(sym, ram_addr_ranges):
if sym.name not in ram_syms:
ram_syms[sym.name] = list()
ram_syms[sym.name].append(entry)
found_sec = True
if not found_sec:
unassigned_syms['sym_name'] = entry
ret = {'rom': rom_syms,
'ram': ram_syms,
'unassigned': unassigned_syms}
return ret
# Parse ELF header to find out the address ranges of ROM or RAM sections
# and their total sizes
def get_section_ranges(elf):
rom_addr_ranges = list()
ram_addr_ranges = list()
rom_size = 0
ram_size = 0
for section in elf.iter_sections():
size = section['sh_size']
sec_start = section['sh_addr']
sec_end = sec_start + size - 1
bound = {'start': sec_start, 'end': sec_end}
if section['sh_type'] == 'SHT_NOBITS':
# BSS and noinit sections
ram_addr_ranges.append(bound)
ram_size += size
elif section['sh_type'] == 'SHT_PROGBITS':
# Sections to be in flash or memory
flags = section['sh_flags']
if (flags & SHF_ALLOC_EXEC) == SHF_ALLOC_EXEC:
# Text section
rom_addr_ranges.append(bound)
rom_size += size
elif (flags & SHF_WRITE_ALLOC) == SHF_WRITE_ALLOC:
# Data occupies both ROM and RAM
# since at boot, content is copied from ROM to RAM
rom_addr_ranges.append(bound)
rom_size += size
ram_addr_ranges.append(bound)
ram_size += size
elif (flags & SHF_ALLOC) == SHF_ALLOC:
# Read only data
rom_addr_ranges.append(bound)
rom_size += size
ret = {'rom': rom_addr_ranges,
'rom_total_size': rom_size,
'ram': ram_addr_ranges,
'ram_total_size': ram_size}
return ret
def get_die_filename(die, lineprog):
zephyrbase = os.path.normpath(args.zephyrbase)
file_index = die.attributes['DW_AT_decl_file'].value
file_entry = lineprog['file_entry'][file_index - 1]
dir_index = file_entry['dir_index']
if dir_index == 0:
filename = file_entry.name
else:
directory = lineprog.header['include_directory'][dir_index - 1]
filename = os.path.join(directory, file_entry.name)
path = Path(filename.decode())
# Prepend output path to relative path
if not path.is_absolute():
output = Path(args.output)
path = output.joinpath(path)
# Change path to relative to Zephyr base
try:
path = path.resolve()
except OSError as e:
if '<built-in>' in str(path):
# This is expected, built-ins can't be resolved
return path
raise e
try:
new_path = path.relative_to(zephyrbase)
path = new_path
except ValueError:
pass
return path
# Sequentially process DIEs in compiler units with direct file mappings
# within the DIEs themselves, and do simply matching between DIE names
# and symbol names.
def do_simple_name_matching(elf, symbol_dict, processed):
mapped_symbols = processed['mapped_symbols']
mapped_addresses = processed['mapped_addr']
unmapped_symbols = processed['unmapped_symbols']
newly_mapped_syms = set()
dwarfinfo = elf.get_dwarf_info()
location_lists = dwarfinfo.location_lists()
location_parser = LocationParser(location_lists)
unmapped_dies = set()
# Loop through all compile units
for compile_unit in dwarfinfo.iter_CUs():
lineprog = dwarfinfo.line_program_for_CU(compile_unit)
if lineprog is None:
continue
# Loop through each DIE and find variables and
# subprograms (i.e. functions)
for die in compile_unit.iter_DIEs():
sym_name = None
# Process variables
if die.tag == 'DW_TAG_variable':
# DW_AT_declaration
# having 'DW_AT_location' means this maps
# to an actual address (e.g. not an extern)
if 'DW_AT_location' in die.attributes:
sym_name = die.get_full_path()
# Process subprograms (i.e. functions) if they are valid
if die.tag == 'DW_TAG_subprogram':
# Refer to another DIE for name
if ('DW_AT_abstract_origin' in die.attributes) or (
'DW_AT_specification' in die.attributes):
unmapped_dies.add(die)
# having 'DW_AT_low_pc' means it maps to
# an actual address
elif 'DW_AT_low_pc' in die.attributes:
# DW_AT_low_pc == 0 is a weak function
# which has been overriden
if die.attributes['DW_AT_low_pc'].value != 0:
sym_name = die.get_full_path()
# For mangled function names, the linkage name
# is what appears in the symbol list
if 'DW_AT_linkage_name' in die.attributes:
linkage = die.attributes['DW_AT_linkage_name']
sym_name = linkage.value.decode()
if sym_name is not None:
# Skip DIE with no reference back to a file
if not 'DW_AT_decl_file' in die.attributes:
continue
is_die_mapped = False
if sym_name in symbol_dict:
mapped_symbols.add(sym_name)
symlist = symbol_dict[sym_name]
symbol = match_symbol_address(symlist, die,
location_parser,
dwarfinfo)
if symbol is not None:
symaddr = symbol['symbol']['st_value']
if symaddr not in mapped_addresses:
is_die_mapped = True
path = get_die_filename(die, lineprog)
symbol['mapped_files'].add(path)
mapped_addresses.add(symaddr)
newly_mapped_syms.add(sym_name)
if not is_die_mapped:
unmapped_dies.add(die)
mapped_symbols = mapped_symbols.union(newly_mapped_syms)
unmapped_symbols = unmapped_symbols.difference(newly_mapped_syms)
processed['mapped_symbols'] = mapped_symbols
processed['mapped_addr'] = mapped_addresses
processed['unmapped_symbols'] = unmapped_symbols
processed['unmapped_dies'] = unmapped_dies
# There are functions and variables which are aliases to
# other functions/variables. So this marks them as mapped
# so they will not get counted again when a tree is being
# built for display.
def mark_address_aliases(symbol_dict, processed):
mapped_symbols = processed['mapped_symbols']
mapped_addresses = processed['mapped_addr']
unmapped_symbols = processed['unmapped_symbols']
already_mapped_syms = set()
for ums in unmapped_symbols:
for one_sym in symbol_dict[ums]:
symbol = one_sym['symbol']
if symbol['st_value'] in mapped_addresses:
already_mapped_syms.add(ums)
mapped_symbols = mapped_symbols.union(already_mapped_syms)
unmapped_symbols = unmapped_symbols.difference(already_mapped_syms)
processed['mapped_symbols'] = mapped_symbols
processed['mapped_addr'] = mapped_addresses
processed['unmapped_symbols'] = unmapped_symbols
# This uses the address ranges of DIEs and map them to symbols
# residing within those ranges, and works on DIEs that have not
# been mapped in previous steps. This works on symbol names
# that do not match the names in DIEs, e.g. "<func>" in DIE,
# but "<func>.constprop.*" in symbol name list. This also
# helps with mapping the mangled function names in C++,
# since the names in DIE are actual function names in source
# code and not mangled version of them.
def do_address_range_matching(elf, symbol_dict, processed):
if 'unmapped_dies' not in processed:
return
mapped_symbols = processed['mapped_symbols']
mapped_addresses = processed['mapped_addr']
unmapped_symbols = processed['unmapped_symbols']
newly_mapped_syms = set()
dwarfinfo = elf.get_dwarf_info()
location_lists = dwarfinfo.location_lists()
location_parser = LocationParser(location_lists)
unmapped_dies = processed['unmapped_dies']
# Group DIEs by compile units
cu_list = dict()
for die in unmapped_dies:
cu = die.cu
if cu not in cu_list:
cu_list[cu] = {'dies': set()}
cu_list[cu]['dies'].add(die)
# Loop through all compile units
for cu in cu_list:
lineprog = dwarfinfo.line_program_for_CU(cu)
# Map offsets from DIEs
offset_map = dict()
for die in cu.iter_DIEs():
offset_map[die.offset] = die
for die in cu_list[cu]['dies']:
if not die.tag == 'DW_TAG_subprogram':
continue
path = None
# Has direct reference to file, so use it
if 'DW_AT_decl_file' in die.attributes:
path = get_die_filename(die, lineprog)
# Loop through indirect reference until a direct
# reference to file is found
if ('DW_AT_abstract_origin' in die.attributes) or (
'DW_AT_specification' in die.attributes):
die_ptr = die
while path is None:
if not (die_ptr.tag == 'DW_TAG_subprogram') or not (
('DW_AT_abstract_origin' in die_ptr.attributes) or
('DW_AT_specification' in die_ptr.attributes)):
break
if 'DW_AT_abstract_origin' in die_ptr.attributes:
ofname = 'DW_AT_abstract_origin'
elif 'DW_AT_specification' in die_ptr.attributes:
ofname = 'DW_AT_specification'
offset = die_ptr.attributes[ofname].value
offset += die_ptr.cu.cu_offset
# There is nothing to reference so no need to continue
if offset not in offset_map:
break
die_ptr = offset_map[offset]
if 'DW_AT_decl_file' in die_ptr.attributes:
path = get_die_filename(die_ptr, lineprog)
# Nothing to map
if path is not None:
low, high = get_die_mapped_address(die, location_parser,
dwarfinfo)
if low is None:
continue
for ums in unmapped_symbols:
for one_sym in symbol_dict[ums]:
symbol = one_sym['symbol']
symaddr = symbol['st_value']
if symaddr not in mapped_addresses:
if low <= symaddr < high:
one_sym['mapped_files'].add(path)
mapped_addresses.add(symaddr)
newly_mapped_syms.add(ums)
mapped_symbols = mapped_symbols.union(newly_mapped_syms)
unmapped_symbols = unmapped_symbols.difference(newly_mapped_syms)
processed['mapped_symbols'] = mapped_symbols
processed['mapped_addr'] = mapped_addresses
processed['unmapped_symbols'] = unmapped_symbols
# Any unmapped symbols are added under the root node if those
# symbols reside within the desired memory address ranges
# (e.g. ROM or RAM).
def set_root_path_for_unmapped_symbols(symbol_dict, addr_range, processed):
mapped_symbols = processed['mapped_symbols']
mapped_addresses = processed['mapped_addr']
unmapped_symbols = processed['unmapped_symbols']
newly_mapped_syms = set()
for ums in unmapped_symbols:
for one_sym in symbol_dict[ums]:
symbol = one_sym['symbol']
symaddr = symbol['st_value']
if is_symbol_in_ranges(symbol, addr_range):
if symaddr not in mapped_addresses:
path = Path(':')
one_sym['mapped_files'].add(path)
mapped_addresses.add(symaddr)
newly_mapped_syms.add(ums)
mapped_symbols = mapped_symbols.union(newly_mapped_syms)
unmapped_symbols = unmapped_symbols.difference(newly_mapped_syms)
processed['mapped_symbols'] = mapped_symbols
processed['mapped_addr'] = mapped_addresses
processed['unmapped_symbols'] = unmapped_symbols
class TreeNode(NodeMixin):
def __init__(self, name, identifier, size=0, parent=None, children=None):
super(TreeNode, self).__init__()
self.name = name
self.size = size
self.parent = parent
self.identifier = identifier
if children:
self.children = children
def __repr__(self):
return self.name
def generate_any_tree(symbol_dict):
root = TreeNode('root', ":")
# A set of helper function for building a simple tree with a path-like
# hierarchy.
def _insert_one_elem(root, path, size):
cur = None
node = None
parent = root
for part in path.parts:
if cur is None:
cur = part
else:
cur = str(Path(cur, part))
results = findall_by_attr(root, cur, name="identifier")
if results:
item = results[0]
item.size += size
parent = item
else:
if node:
parent = node
node = TreeNode(name=str(part), identifier=cur, size=size, parent=parent)
for name, sym in symbol_dict.items():
for symbol in sym:
size = get_symbol_size(symbol['symbol'])
for file in symbol['mapped_files']:
path = Path(file, name)
if path.is_absolute():
zb = Path(args.zephyrbase)
if zb.parent in path.parents:
path = path.relative_to(zb.parent)
_insert_one_elem(root, path, size)
return root
def node_sort(items):
return sorted(items, key=lambda item: item.name)
def print_any_tree(root, total_size, depth):
print('{:101s} {:7s} {:8s}'.format(
Fore.YELLOW + "Path", "Size", "%" + Fore.RESET))
print('=' * 110)
for row in RenderTree(root, childiter=node_sort, maxlevel=depth):
f = len(row.pre) + len(row.node.name)
s = str(row.node.size).rjust(100-f)
percent = 100 * float(row.node.size) / float(total_size)
cc = cr = ""
if not row.node.children:
cc = Fore.CYAN
cr = Fore.RESET
elif row.node.name.endswith(".c") or row.node.name.endswith(".h"):
cc = Fore.GREEN
cr = Fore.RESET
print(f"{row.pre}{cc}{row.node.name}{cr} {s} {Fore.BLUE}{percent:.2f}%{Fore.RESET}")
print('=' * 110)
print(f'{total_size:>101}')
def parse_args():
global args
parser = argparse.ArgumentParser()
parser.add_argument("-k", "--kernel", required=True,
help="Zephyr ELF binary")
parser.add_argument("-z", "--zephyrbase", required=True,
help="Zephyr base path")
parser.add_argument("-o", "--output", required=True,
help="Output path")
parser.add_argument("target", choices=['rom', 'ram'])
parser.add_argument("-d", "--depth", dest="depth",
type=int, default=None,
help="How deep should we go into the tree",
metavar="DEPTH")
parser.add_argument("-v", "--verbose", action="store_true",
help="Print extra debugging information")
parser.add_argument("--json", help="store results in a JSON file.")
args = parser.parse_args()
def main():
parse_args()
# Init colorama
init()
assert os.path.exists(args.kernel), "{0} does not exist.".format(args.kernel)
elf = ELFFile(open(args.kernel, "rb"))
assert elf.has_dwarf_info(), "ELF file has no DWARF information"
set_global_machine_arch(elf.get_machine_arch())
addr_ranges = get_section_ranges(elf)
symbols = get_symbols(elf, addr_ranges)
for sym in symbols['unassigned'].values():
print("WARN: Symbol '{0}' is not in RAM or ROM".format(sym['name']))
symbol_dict = None
if args.target == 'rom':
symbol_dict = symbols['rom']
symsize = addr_ranges['rom_total_size']
ranges = addr_ranges['rom']
elif args.target == 'ram':
symbol_dict = symbols['ram']
symsize = addr_ranges['ram_total_size']
ranges = addr_ranges['ram']
if symbol_dict is not None:
processed = {"mapped_symbols": set(),
"mapped_addr": set(),
"unmapped_symbols": set(symbol_dict.keys())}
do_simple_name_matching(elf, symbol_dict, processed)
mark_address_aliases(symbol_dict, processed)
do_address_range_matching(elf, symbol_dict, processed)
mark_address_aliases(symbol_dict, processed)
set_root_path_for_unmapped_symbols(symbol_dict, ranges, processed)
if args.verbose:
for sym in processed['unmapped_symbols']:
print("INFO: Unmapped symbol: {0}".format(sym))
root = generate_any_tree(symbol_dict)
print_any_tree(root, symsize, args.depth)
if args.json:
exporter = DictExporter()
data = dict()
data["symbols"] = exporter.export(root)
data["total_size"] = symsize
with open(args.json, "w") as fp:
json.dump(data, fp, indent=4)
if __name__ == "__main__":
main()