zephyr/drivers/spi/spi_xmc4xxx.c
Andriy Gelman 325e28218f drivers: spi: xmc4xxx: Fix compiler warning with debug flags enabled
Fixes warning when CONFIG_DEBUG_OPTIMIZATION=y:

zephyrproject/modules/hal/infineon/XMCLib/drivers/inc/xmc_usic.h:2132:18:
warning: 'clock_settings' may be used uninitialized [-Wmaybe-uninitialized]
 2132 |                  (uint32_t)passive_level |
      |                  ^~~~~~~~~~~~~~~~~~~~~~~

Signed-off-by: Andriy Gelman <andriy.gelman@gmail.com>
2023-11-16 09:26:50 +01:00

692 lines
22 KiB
C

/*
* Copyright (c) 2022 Schlumberger
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT infineon_xmc4xxx_spi
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_xmc4xxx);
#include "spi_context.h"
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/spi.h>
#include <xmc_spi.h>
#include <xmc_usic.h>
#define USIC_IRQ_MIN 84
#define USIC_IRQ_MAX 101
#define IRQS_PER_USIC 6
#define SPI_XMC4XXX_DMA_ERROR_FLAG BIT(0)
#define SPI_XMC4XXX_DMA_RX_DONE_FLAG BIT(1)
#define SPI_XMC4XXX_DMA_TX_DONE_FLAG BIT(2)
#ifdef CONFIG_SPI_XMC4XXX_DMA
static const uint8_t __aligned(4) tx_dummy_data;
#endif
struct spi_xmc4xxx_config {
XMC_USIC_CH_t *spi;
const struct pinctrl_dev_config *pcfg;
uint8_t miso_src;
#if defined(CONFIG_SPI_XMC4XXX_INTERRUPT)
void (*irq_config_func)(const struct device *dev);
#endif
#if defined(CONFIG_SPI_XMC4XXX_DMA)
uint8_t irq_num_tx;
uint8_t irq_num_rx;
#endif
};
#ifdef CONFIG_SPI_XMC4XXX_DMA
struct spi_xmc4xxx_dma_stream {
const struct device *dev_dma;
uint32_t dma_channel;
struct dma_config dma_cfg;
struct dma_block_config blk_cfg;
};
#endif
struct spi_xmc4xxx_data {
struct spi_context ctx;
#if defined(CONFIG_SPI_XMC4XXX_DMA)
struct spi_xmc4xxx_dma_stream dma_rx;
struct spi_xmc4xxx_dma_stream dma_tx;
struct k_sem status_sem;
uint8_t dma_status_flags;
uint8_t dma_completion_flags;
uint8_t service_request_tx;
uint8_t service_request_rx;
#endif
};
#if defined(CONFIG_SPI_XMC4XXX_DMA)
static void spi_xmc4xxx_dma_callback(const struct device *dev_dma, void *arg, uint32_t dma_channel,
int status)
{
struct spi_xmc4xxx_data *data = arg;
if (status != 0) {
LOG_ERR("DMA callback error on channel %d.", dma_channel);
data->dma_status_flags |= SPI_XMC4XXX_DMA_ERROR_FLAG;
} else {
if (dev_dma == data->dma_tx.dev_dma && dma_channel == data->dma_tx.dma_channel) {
data->dma_status_flags |= SPI_XMC4XXX_DMA_TX_DONE_FLAG;
} else if (dev_dma == data->dma_rx.dev_dma &&
dma_channel == data->dma_rx.dma_channel) {
data->dma_status_flags |= SPI_XMC4XXX_DMA_RX_DONE_FLAG;
} else {
LOG_ERR("DMA callback channel %d is not valid.", dma_channel);
data->dma_status_flags |= SPI_XMC4XXX_DMA_ERROR_FLAG;
}
}
k_sem_give(&data->status_sem);
}
#endif
static void spi_xmc4xxx_flush_rx(XMC_USIC_CH_t *spi)
{
uint32_t recv_status;
recv_status = XMC_USIC_CH_GetReceiveBufferStatus(spi);
if (recv_status & USIC_CH_RBUFSR_RDV0_Msk) {
XMC_SPI_CH_GetReceivedData(spi);
}
if (recv_status & USIC_CH_RBUFSR_RDV1_Msk) {
XMC_SPI_CH_GetReceivedData(spi);
}
}
static void spi_xmc4xxx_shift_frames(const struct device *dev)
{
struct spi_xmc4xxx_data *data = dev->data;
const struct spi_xmc4xxx_config *config = dev->config;
struct spi_context *ctx = &data->ctx;
uint8_t tx_data = 0;
uint8_t rx_data;
uint32_t status;
if (spi_context_tx_buf_on(ctx)) {
tx_data = ctx->tx_buf[0];
}
XMC_SPI_CH_ClearStatusFlag(config->spi,
XMC_SPI_CH_STATUS_FLAG_TRANSMIT_SHIFT_INDICATION |
XMC_SPI_CH_STATUS_FLAG_RECEIVE_INDICATION |
XMC_SPI_CH_STATUS_FLAG_ALTERNATIVE_RECEIVE_INDICATION);
spi_context_update_tx(ctx, 1, 1);
XMC_SPI_CH_Transmit(config->spi, tx_data, XMC_SPI_CH_MODE_STANDARD);
#if defined(CONFIG_SPI_XMC4XXX_INTERRUPT)
return;
#endif
/* Wait to finish transmitting */
while (1) {
status = XMC_SPI_CH_GetStatusFlag(config->spi);
if (status & XMC_SPI_CH_STATUS_FLAG_TRANSMIT_SHIFT_INDICATION) {
break;
}
}
/* Wait to finish receiving */
while (1) {
status = XMC_SPI_CH_GetStatusFlag(config->spi);
if (status & (XMC_SPI_CH_STATUS_FLAG_RECEIVE_INDICATION |
XMC_SPI_CH_STATUS_FLAG_ALTERNATIVE_RECEIVE_INDICATION)) {
break;
}
}
rx_data = XMC_SPI_CH_GetReceivedData(config->spi);
if (spi_context_rx_buf_on(ctx)) {
*ctx->rx_buf = rx_data;
}
spi_context_update_rx(ctx, 1, 1);
}
#if defined(CONFIG_SPI_XMC4XXX_INTERRUPT)
static void spi_xmc4xxx_isr(const struct device *dev)
{
struct spi_xmc4xxx_data *data = dev->data;
const struct spi_xmc4xxx_config *config = dev->config;
struct spi_context *ctx = &data->ctx;
uint8_t rx_data;
rx_data = XMC_SPI_CH_GetReceivedData(config->spi);
if (spi_context_rx_buf_on(ctx)) {
*ctx->rx_buf = rx_data;
}
spi_context_update_rx(ctx, 1, 1);
if (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) {
spi_xmc4xxx_shift_frames(dev);
return;
}
if (!(ctx->config->operation & SPI_HOLD_ON_CS)) {
spi_context_cs_control(ctx, false);
}
spi_context_complete(ctx, dev, 0);
}
#endif
#define LOOPBACK_SRC 6
static int spi_xmc4xxx_configure(const struct device *dev, const struct spi_config *spi_cfg)
{
int ret;
struct spi_xmc4xxx_data *data = dev->data;
const struct spi_xmc4xxx_config *config = dev->config;
struct spi_context *ctx = &data->ctx;
uint16_t settings = spi_cfg->operation;
bool CPOL = SPI_MODE_GET(settings) & SPI_MODE_CPOL;
bool CPHA = SPI_MODE_GET(settings) & SPI_MODE_CPHA;
XMC_SPI_CH_CONFIG_t usic_cfg = {.baudrate = spi_cfg->frequency};
XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_t clock_settings =
XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_0_DELAY_ENABLED;
if (spi_context_configured(ctx, spi_cfg)) {
return 0;
}
ctx->config = spi_cfg;
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
if (spi_cfg->operation & SPI_OP_MODE_SLAVE) {
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
LOG_ERR("Only 8 bit word size is supported");
return -ENOTSUP;
}
ret = XMC_SPI_CH_Stop(config->spi);
if (ret != XMC_SPI_CH_STATUS_OK) {
return -EBUSY;
}
XMC_SPI_CH_Init(config->spi, &usic_cfg);
XMC_SPI_CH_Start(config->spi);
if (SPI_MODE_GET(settings) & SPI_MODE_LOOP) {
XMC_SPI_CH_SetInputSource(config->spi, XMC_SPI_CH_INPUT_DIN0, LOOPBACK_SRC);
} else {
XMC_SPI_CH_SetInputSource(config->spi, XMC_SPI_CH_INPUT_DIN0, config->miso_src);
}
if (!CPOL && !CPHA) {
clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_0_DELAY_ENABLED;
} else if (!CPOL && CPHA) {
clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_0_DELAY_DISABLED;
} else if (CPOL && !CPHA) {
clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_1_DELAY_ENABLED;
} else if (CPOL && CPHA) {
clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_1_DELAY_DISABLED;
}
XMC_SPI_CH_ConfigureShiftClockOutput(config->spi, clock_settings,
XMC_SPI_CH_BRG_SHIFT_CLOCK_OUTPUT_SCLK);
if (settings & SPI_TRANSFER_LSB) {
XMC_SPI_CH_SetBitOrderLsbFirst(config->spi);
} else {
XMC_SPI_CH_SetBitOrderMsbFirst(config->spi);
}
XMC_SPI_CH_SetWordLength(config->spi, 8);
return 0;
}
static int spi_xmc4xxx_transceive(const struct device *dev, const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous, spi_callback_t cb, void *userdata)
{
struct spi_xmc4xxx_data *data = dev->data;
const struct spi_xmc4xxx_config *config = dev->config;
struct spi_context *ctx = &data->ctx;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_SPI_XMC4XXX_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif
spi_context_lock(ctx, asynchronous, cb, userdata, spi_cfg);
ret = spi_xmc4xxx_configure(dev, spi_cfg);
if (ret) {
LOG_DBG("SPI config on device %s failed", dev->name);
spi_context_release(ctx, ret);
return ret;
}
spi_xmc4xxx_flush_rx(config->spi);
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(ctx, true);
#if defined(CONFIG_SPI_XMC4XXX_INTERRUPT)
XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_STANDARD_RECEIVE |
XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE);
spi_xmc4xxx_shift_frames(dev);
ret = spi_context_wait_for_completion(ctx);
/* cs released in isr */
#else
while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) {
spi_xmc4xxx_shift_frames(dev);
}
if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) {
spi_context_cs_control(ctx, false);
}
#endif
spi_context_release(ctx, ret);
return ret;
}
#if defined(CONFIG_SPI_ASYNC)
static int spi_xmc4xxx_transceive_async(const struct device *dev, const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return spi_xmc4xxx_transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif
#if defined(CONFIG_SPI_XMC4XXX_DMA)
static int spi_xmc4xxx_dma_rx_tx_done(struct spi_xmc4xxx_data *data)
{
for (;;) {
int ret;
ret = k_sem_take(&data->status_sem, K_MSEC(CONFIG_SPI_XMC4XXX_DMA_TIMEOUT_MSEC));
if (ret != 0) {
LOG_ERR("Sem take error %d", ret);
return ret;
}
if (data->dma_status_flags & SPI_XMC4XXX_DMA_ERROR_FLAG) {
return -EIO;
}
if (data->dma_status_flags == data->dma_completion_flags) {
return 0;
}
}
}
static int spi_xmc4xxx_transceive_dma(const struct device *dev, const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb, void *userdata)
{
struct spi_xmc4xxx_data *data = dev->data;
const struct spi_xmc4xxx_config *config = dev->config;
struct spi_context *ctx = &data->ctx;
struct spi_xmc4xxx_dma_stream *dma_tx = &data->dma_tx;
struct spi_xmc4xxx_dma_stream *dma_rx = &data->dma_rx;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
if (asynchronous) {
return -ENOTSUP;
}
spi_context_lock(ctx, asynchronous, cb, userdata, spi_cfg);
k_sem_reset(&data->status_sem);
ret = spi_xmc4xxx_configure(dev, spi_cfg);
if (ret) {
LOG_ERR("SPI config on device %s failed", dev->name);
spi_context_release(ctx, ret);
return ret;
}
/* stop async isr from triggering */
irq_disable(config->irq_num_rx);
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(ctx, true);
while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) {
int dma_len;
uint8_t dma_completion_flags = SPI_XMC4XXX_DMA_TX_DONE_FLAG;
/* make sure the tx is not transmitting */
while (XMC_USIC_CH_GetTransmitBufferStatus(config->spi) ==
XMC_USIC_CH_TBUF_STATUS_BUSY) {
};
if (data->ctx.rx_len == 0) {
dma_len = data->ctx.tx_len;
} else if (data->ctx.tx_len == 0) {
dma_len = data->ctx.rx_len;
} else {
dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len);
}
if (ctx->rx_buf) {
spi_xmc4xxx_flush_rx(config->spi);
dma_rx->blk_cfg.dest_address = (uint32_t)ctx->rx_buf;
dma_rx->blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
dma_rx->blk_cfg.block_size = dma_len;
dma_rx->blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
ret = dma_config(dma_rx->dev_dma, dma_rx->dma_channel, &dma_rx->dma_cfg);
if (ret < 0) {
break;
}
XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_STANDARD_RECEIVE |
XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE);
dma_completion_flags |= SPI_XMC4XXX_DMA_RX_DONE_FLAG;
ret = dma_start(dma_rx->dev_dma, dma_rx->dma_channel);
if (ret < 0) {
break;
}
} else {
XMC_SPI_CH_DisableEvent(config->spi,
XMC_SPI_CH_EVENT_STANDARD_RECEIVE |
XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE);
}
if (ctx->tx_buf) {
dma_tx->blk_cfg.source_address = (uint32_t)ctx->tx_buf;
dma_tx->blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
dma_tx->blk_cfg.source_address = (uint32_t)&tx_dummy_data;
dma_tx->blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
dma_tx->blk_cfg.block_size = dma_len;
ret = dma_config(dma_tx->dev_dma, dma_tx->dma_channel, &dma_tx->dma_cfg);
if (ret < 0) {
break;
}
data->dma_status_flags = 0;
data->dma_completion_flags = dma_completion_flags;
XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_RECEIVE_START);
XMC_USIC_CH_TriggerServiceRequest(config->spi, data->service_request_tx);
ret = dma_start(dma_tx->dev_dma, dma_tx->dma_channel);
if (ret < 0) {
break;
}
ret = spi_xmc4xxx_dma_rx_tx_done(data);
if (ret) {
break;
}
spi_context_update_tx(ctx, 1, dma_len);
spi_context_update_rx(ctx, 1, dma_len);
}
if (ret < 0) {
dma_stop(dma_tx->dev_dma, dma_tx->dma_channel);
dma_stop(dma_rx->dev_dma, dma_rx->dma_channel);
}
if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) {
spi_context_cs_control(ctx, false);
}
#if defined(CONFIG_SPI_XMC4XXX_INTERRUPT)
irq_enable(config->irq_num_rx);
#endif
spi_context_release(ctx, ret);
return ret;
}
#endif
static int spi_xmc4xxx_transceive_sync(const struct device *dev, const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
#if defined(CONFIG_SPI_XMC4XXX_DMA)
struct spi_xmc4xxx_data *data = dev->data;
if (data->dma_tx.dev_dma != NULL && data->dma_rx.dev_dma != NULL) {
return spi_xmc4xxx_transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL,
NULL);
}
#endif
return spi_xmc4xxx_transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
static int spi_xmc4xxx_release(const struct device *dev, const struct spi_config *config)
{
struct spi_xmc4xxx_data *data = dev->data;
if (!spi_context_configured(&data->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#if defined(CONFIG_SPI_XMC4XXX_DMA)
static void spi_xmc4xxx_configure_rx_service_requests(const struct device *dev)
{
const struct spi_xmc4xxx_config *config = dev->config;
struct spi_xmc4xxx_data *data = dev->data;
__ASSERT(config->irq_num_rx >= USIC_IRQ_MIN && config->irq_num_rx <= USIC_IRQ_MAX,
"Invalid irq number\n");
data->service_request_rx = (config->irq_num_rx - USIC_IRQ_MIN) % IRQS_PER_USIC;
XMC_SPI_CH_SelectInterruptNodePointer(config->spi,
XMC_SPI_CH_INTERRUPT_NODE_POINTER_RECEIVE,
data->service_request_rx);
XMC_SPI_CH_SelectInterruptNodePointer(config->spi,
XMC_SPI_CH_INTERRUPT_NODE_POINTER_ALTERNATE_RECEIVE,
data->service_request_rx);
}
static void spi_xmc4xxx_configure_tx_service_requests(const struct device *dev)
{
const struct spi_xmc4xxx_config *config = dev->config;
struct spi_xmc4xxx_data *data = dev->data;
__ASSERT(config->irq_num_tx >= USIC_IRQ_MIN && config->irq_num_tx <= USIC_IRQ_MAX,
"Invalid irq number\n");
data->service_request_tx = (config->irq_num_tx - USIC_IRQ_MIN) % IRQS_PER_USIC;
XMC_USIC_CH_SetInterruptNodePointer(config->spi,
XMC_USIC_CH_INTERRUPT_NODE_POINTER_TRANSMIT_BUFFER,
data->service_request_tx);
}
#endif
static int spi_xmc4xxx_init(const struct device *dev)
{
struct spi_xmc4xxx_data *data = dev->data;
const struct spi_xmc4xxx_config *config = dev->config;
int ret;
XMC_USIC_CH_Enable(config->spi);
spi_context_unlock_unconditionally(&data->ctx);
#if defined(CONFIG_SPI_XMC4XXX_INTERRUPT)
config->irq_config_func(dev);
#endif
#if defined(CONFIG_SPI_XMC4XXX_DMA)
spi_xmc4xxx_configure_tx_service_requests(dev);
spi_xmc4xxx_configure_rx_service_requests(dev);
if (data->dma_rx.dev_dma != NULL) {
if (!device_is_ready(data->dma_rx.dev_dma)) {
return -ENODEV;
}
data->dma_rx.blk_cfg.source_address = (uint32_t)&config->spi->RBUF;
data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg;
data->dma_rx.dma_cfg.user_data = (void *)data;
}
if (data->dma_tx.dev_dma != NULL) {
if (!device_is_ready(data->dma_tx.dev_dma)) {
return -ENODEV;
}
data->dma_tx.blk_cfg.dest_address =
(uint32_t)&config->spi->TBUF[XMC_SPI_CH_MODE_STANDARD];
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg;
data->dma_tx.dma_cfg.user_data = (void *)data;
}
k_sem_init(&data->status_sem, 0, 2);
#endif
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
XMC_SPI_CH_SetInputSource(config->spi, XMC_SPI_CH_INPUT_DIN0, config->miso_src);
spi_context_cs_configure_all(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_xmc4xxx_driver_api = {
.transceive = spi_xmc4xxx_transceive_sync,
#if defined(CONFIG_SPI_ASYNC)
.transceive_async = spi_xmc4xxx_transceive_async,
#endif
.release = spi_xmc4xxx_release,
};
#if defined(CONFIG_SPI_XMC4XXX_DMA)
#define SPI_DMA_CHANNEL_INIT(index, dir, ch_dir, src_burst, dst_burst) \
.dev_dma = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME(index, dir, config), \
.channel_direction = ch_dir, \
.channel_priority = DT_INST_DMAS_CELL_BY_NAME(index, dir, priority), \
.source_data_size = 1, \
.dest_data_size = 1, \
.source_burst_length = src_burst, \
.dest_burst_length = dst_burst, \
.block_count = 1, \
.dma_callback = spi_xmc4xxx_dma_callback, \
.complete_callback_en = true, \
},
#define SPI_DMA_CHANNEL(index, dir, ch_dir, src_burst, dst_burst) \
.dma_##dir = {COND_CODE_1( \
DT_INST_DMAS_HAS_NAME(index, dir), \
(SPI_DMA_CHANNEL_INIT(index, dir, ch_dir, src_burst, dst_burst)), (NULL))},
#else
#define SPI_DMA_CHANNEL(index, dir, ch_dir, src_burst, dst_burst)
#endif
#if defined(CONFIG_SPI_XMC4XXX_INTERRUPT)
#define XMC4XXX_IRQ_HANDLER_INIT(index) \
static void spi_xmc4xxx_irq_setup_##index(const struct device *dev) \
{ \
const struct spi_xmc4xxx_config *config = dev->config; \
uint8_t service_request; \
uint8_t irq_num; \
\
irq_num = DT_INST_IRQ_BY_NAME(index, rx, irq); \
service_request = (irq_num - USIC_IRQ_MIN) % IRQS_PER_USIC; \
\
XMC_SPI_CH_SelectInterruptNodePointer( \
config->spi, XMC_SPI_CH_INTERRUPT_NODE_POINTER_RECEIVE, service_request); \
XMC_SPI_CH_SelectInterruptNodePointer( \
config->spi, XMC_SPI_CH_INTERRUPT_NODE_POINTER_ALTERNATE_RECEIVE, \
service_request); \
\
XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_STANDARD_RECEIVE | \
XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE); \
\
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, rx, irq), \
DT_INST_IRQ_BY_NAME(index, rx, priority), spi_xmc4xxx_isr, \
DEVICE_DT_INST_GET(index), 0); \
\
irq_enable(irq_num); \
}
#define XMC4XXX_IRQ_HANDLER_STRUCT_INIT(index) .irq_config_func = spi_xmc4xxx_irq_setup_##index,
#else
#define XMC4XXX_IRQ_HANDLER_INIT(index)
#define XMC4XXX_IRQ_HANDLER_STRUCT_INIT(index)
#endif
#if defined(CONFIG_SPI_XMC4XXX_DMA)
#define XMC4XXX_IRQ_DMA_STRUCT_INIT(index) \
.irq_num_rx = DT_INST_IRQ_BY_NAME(index, rx, irq), \
.irq_num_tx = DT_INST_IRQ_BY_NAME(index, tx, irq),
#else
#define XMC4XXX_IRQ_DMA_STRUCT_INIT(index)
#endif
#define XMC4XXX_INIT(index) \
PINCTRL_DT_INST_DEFINE(index); \
XMC4XXX_IRQ_HANDLER_INIT(index) \
static struct spi_xmc4xxx_data xmc4xxx_data_##index = { \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(index), ctx) \
SPI_CONTEXT_INIT_LOCK(xmc4xxx_data_##index, ctx), \
SPI_CONTEXT_INIT_SYNC(xmc4xxx_data_##index, ctx), \
SPI_DMA_CHANNEL(index, tx, MEMORY_TO_PERIPHERAL, 8, 1) \
SPI_DMA_CHANNEL(index, rx, PERIPHERAL_TO_MEMORY, 1, 8)}; \
\
static const struct spi_xmc4xxx_config xmc4xxx_config_##index = { \
.spi = (XMC_USIC_CH_t *)DT_INST_REG_ADDR(index), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
.miso_src = DT_INST_ENUM_IDX(index, miso_src), \
XMC4XXX_IRQ_HANDLER_STRUCT_INIT(index) \
XMC4XXX_IRQ_DMA_STRUCT_INIT(index)}; \
\
DEVICE_DT_INST_DEFINE(index, &spi_xmc4xxx_init, NULL, &xmc4xxx_data_##index, \
&xmc4xxx_config_##index, POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, &spi_xmc4xxx_driver_api);
DT_INST_FOREACH_STATUS_OKAY(XMC4XXX_INIT)