ab49673bc8
There was an inconsistency in the API as z_nrf_rtc_timer_chan_alloc returned int but other function were using uint32_t for channel argument. Updated api to use int32_t everywhere. Update nrf_802154 driver which was using this api to use int32_t. Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
404 lines
10 KiB
C
404 lines
10 KiB
C
/*
|
|
* Copyright (c) 2016-2017 Nordic Semiconductor ASA
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <soc.h>
|
|
#include <drivers/clock_control.h>
|
|
#include <drivers/clock_control/nrf_clock_control.h>
|
|
#include <drivers/timer/system_timer.h>
|
|
#include <drivers/timer/nrf_rtc_timer.h>
|
|
#include <sys_clock.h>
|
|
#include <hal/nrf_rtc.h>
|
|
#include <spinlock.h>
|
|
|
|
|
|
#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
|
|
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)
|
|
|
|
#define RTC NRF_RTC1
|
|
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
|
|
#define RTC_LABEL rtc1
|
|
#define RTC_CH_COUNT RTC1_CC_NUM
|
|
|
|
BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels");
|
|
|
|
#define COUNTER_SPAN BIT(24)
|
|
#define COUNTER_MAX (COUNTER_SPAN - 1U)
|
|
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
|
|
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
|
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
|
|
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
|
|
|
|
static struct k_spinlock lock;
|
|
|
|
static uint32_t last_count;
|
|
|
|
struct z_nrf_rtc_timer_chan_data {
|
|
z_nrf_rtc_timer_compare_handler_t callback;
|
|
void *user_context;
|
|
};
|
|
|
|
static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
|
|
static atomic_t int_mask;
|
|
static atomic_t alloc_mask;
|
|
|
|
static uint32_t counter_sub(uint32_t a, uint32_t b)
|
|
{
|
|
return (a - b) & COUNTER_MAX;
|
|
}
|
|
|
|
static void set_comparator(int32_t chan, uint32_t cyc)
|
|
{
|
|
nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
|
|
}
|
|
|
|
static uint32_t get_comparator(int32_t chan)
|
|
{
|
|
return nrf_rtc_cc_get(RTC, chan);
|
|
}
|
|
|
|
static void event_clear(int32_t chan)
|
|
{
|
|
nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
|
|
}
|
|
|
|
static void event_enable(int32_t chan)
|
|
{
|
|
nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
static void event_disable(int32_t chan)
|
|
{
|
|
nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
static uint32_t counter(void)
|
|
{
|
|
return nrf_rtc_counter_get(RTC);
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_read(void)
|
|
{
|
|
return nrf_rtc_counter_get(RTC);
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan < CHAN_COUNT);
|
|
return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
|
|
}
|
|
|
|
bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
|
|
|
|
atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
|
|
|
|
nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
|
|
return prev & BIT(chan);
|
|
}
|
|
|
|
void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
|
|
{
|
|
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
|
|
|
|
if (key) {
|
|
atomic_or(&int_mask, BIT(chan));
|
|
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan < CHAN_COUNT);
|
|
|
|
return nrf_rtc_cc_get(RTC, chan);
|
|
}
|
|
|
|
int z_nrf_rtc_timer_get_ticks(k_timeout_t t)
|
|
{
|
|
uint32_t curr_count;
|
|
int64_t curr_tick;
|
|
int64_t result;
|
|
int64_t abs_ticks;
|
|
|
|
do {
|
|
curr_count = counter();
|
|
curr_tick = sys_clock_tick_get();
|
|
} while (curr_count != counter());
|
|
|
|
abs_ticks = Z_TICK_ABS(t.ticks);
|
|
if (abs_ticks < 0) {
|
|
/* relative timeout */
|
|
return (t.ticks > COUNTER_HALF_SPAN) ?
|
|
-EINVAL : ((curr_count + t.ticks) & COUNTER_MAX);
|
|
}
|
|
|
|
/* absolute timeout */
|
|
result = abs_ticks - curr_tick;
|
|
|
|
if ((result > COUNTER_HALF_SPAN) ||
|
|
(result < -(int64_t)COUNTER_HALF_SPAN)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return (curr_count + result) & COUNTER_MAX;
|
|
}
|
|
|
|
/* Function safely sets absolute alarm. It assumes that provided value is
|
|
* less than COUNTER_HALF_SPAN from now. It detects late setting and also
|
|
* handle +1 cycle case.
|
|
*/
|
|
static void set_absolute_alarm(int32_t chan, uint32_t abs_val)
|
|
{
|
|
uint32_t now;
|
|
uint32_t now2;
|
|
uint32_t cc_val = abs_val & COUNTER_MAX;
|
|
uint32_t prev_cc = get_comparator(chan);
|
|
|
|
do {
|
|
now = counter();
|
|
|
|
/* Handle case when previous event may generate an event.
|
|
* It is handled by setting CC to now (far in the future),
|
|
* in case previous event was set for next tick wait for half
|
|
* LF tick and clear event that may have been generated.
|
|
*/
|
|
set_comparator(chan, now);
|
|
if (counter_sub(prev_cc, now) == 1) {
|
|
/* It should wait for half of RTC tick 15.26us. As
|
|
* busy wait runs from different clock source thus
|
|
* wait longer to cover for discrepancy.
|
|
*/
|
|
k_busy_wait(19);
|
|
}
|
|
|
|
|
|
/* If requested cc_val is in the past or next tick, set to 2
|
|
* ticks from now. RTC may not generate event if CC is set for
|
|
* 1 tick from now.
|
|
*/
|
|
if (counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) {
|
|
cc_val = now + 2;
|
|
}
|
|
|
|
event_clear(chan);
|
|
event_enable(chan);
|
|
set_comparator(chan, cc_val);
|
|
now2 = counter();
|
|
prev_cc = cc_val;
|
|
/* Rerun the algorithm if counter progressed during execution
|
|
* and cc_val is in the past or one tick from now. In such
|
|
* scenario, it is possible that event will not be generated.
|
|
* Reruning the algorithm will delay the alarm but ensure that
|
|
* event will be generated at the moment indicated by value in
|
|
* CC register.
|
|
*/
|
|
} while ((now2 != now) &&
|
|
(counter_sub(cc_val, now2 + 2) > COUNTER_HALF_SPAN));
|
|
}
|
|
|
|
static void compare_set(int32_t chan, uint32_t cc_value,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data)
|
|
{
|
|
cc_data[chan].callback = handler;
|
|
cc_data[chan].user_context = user_data;
|
|
|
|
set_absolute_alarm(chan, cc_value);
|
|
}
|
|
|
|
void z_nrf_rtc_timer_compare_set(int32_t chan, uint32_t cc_value,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data)
|
|
{
|
|
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
|
|
|
|
bool key = z_nrf_rtc_timer_compare_int_lock(chan);
|
|
|
|
compare_set(chan, cc_value, handler, user_data);
|
|
|
|
z_nrf_rtc_timer_compare_int_unlock(chan, key);
|
|
}
|
|
|
|
static void sys_clock_timeout_handler(int32_t chan,
|
|
uint32_t cc_value,
|
|
void *user_data)
|
|
{
|
|
uint32_t dticks = counter_sub(cc_value, last_count) / CYC_PER_TICK;
|
|
|
|
last_count += dticks * CYC_PER_TICK;
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* protection is not needed because we are in the RTC interrupt
|
|
* so it won't get preempted by the interrupt.
|
|
*/
|
|
compare_set(chan, last_count + CYC_PER_TICK,
|
|
sys_clock_timeout_handler, NULL);
|
|
}
|
|
|
|
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
|
|
dticks : (dticks > 0));
|
|
}
|
|
|
|
/* Note: this function has public linkage, and MUST have this
|
|
* particular name. The platform architecture itself doesn't care,
|
|
* but there is a test (tests/arch/arm_irq_vector_table) that needs
|
|
* to find it to it can set it in a custom vector table. Should
|
|
* probably better abstract that at some point (e.g. query and reset
|
|
* it by pointer at runtime, maybe?) so we don't have this leaky
|
|
* symbol.
|
|
*/
|
|
void rtc_nrf_isr(const void *arg)
|
|
{
|
|
ARG_UNUSED(arg);
|
|
|
|
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
|
|
if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan)) &&
|
|
nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan))) {
|
|
uint32_t cc_val;
|
|
z_nrf_rtc_timer_compare_handler_t handler;
|
|
|
|
event_clear(chan);
|
|
event_disable(chan);
|
|
cc_val = get_comparator(chan);
|
|
handler = cc_data[chan].callback;
|
|
cc_data[chan].callback = NULL;
|
|
if (handler) {
|
|
handler(chan, cc_val,
|
|
cc_data[chan].user_context);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t z_nrf_rtc_timer_chan_alloc(void)
|
|
{
|
|
int32_t chan;
|
|
atomic_val_t prev;
|
|
do {
|
|
chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
|
|
if (chan < 0) {
|
|
return -ENOMEM;
|
|
}
|
|
prev = atomic_and(&alloc_mask, ~BIT(chan));
|
|
} while (!(prev & BIT(chan)));
|
|
|
|
return chan;
|
|
}
|
|
|
|
void z_nrf_rtc_timer_chan_free(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
|
|
|
|
atomic_or(&alloc_mask, BIT(chan));
|
|
}
|
|
|
|
int sys_clock_driver_init(const struct device *dev)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
static const enum nrf_lfclk_start_mode mode =
|
|
IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
|
|
CLOCK_CONTROL_NRF_LF_START_NOWAIT :
|
|
(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
|
|
CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
|
|
CLOCK_CONTROL_NRF_LF_START_STABLE);
|
|
|
|
/* TODO: replace with counter driver to access RTC */
|
|
nrf_rtc_prescaler_set(RTC, 0);
|
|
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
|
|
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
NVIC_ClearPendingIRQ(RTC_IRQn);
|
|
|
|
IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
|
|
rtc_nrf_isr, 0, 0);
|
|
irq_enable(RTC_IRQn);
|
|
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
|
|
|
|
int_mask = BIT_MASK(CHAN_COUNT);
|
|
if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
|
|
alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
compare_set(0, counter() + CYC_PER_TICK,
|
|
sys_clock_timeout_handler, NULL);
|
|
}
|
|
|
|
z_nrf_clock_control_lf_on(mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle)
|
|
{
|
|
ARG_UNUSED(idle);
|
|
uint32_t cyc;
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return;
|
|
}
|
|
|
|
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
|
|
ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
|
|
|
|
uint32_t unannounced = counter_sub(counter(), last_count);
|
|
|
|
/* If we haven't announced for more than half the 24-bit wrap
|
|
* duration, then force an announce to avoid loss of a wrap
|
|
* event. This can happen if new timeouts keep being set
|
|
* before the existing one triggers the interrupt.
|
|
*/
|
|
if (unannounced >= COUNTER_HALF_SPAN) {
|
|
ticks = 0;
|
|
}
|
|
|
|
/* Get the cycles from last_count to the tick boundary after
|
|
* the requested ticks have passed starting now.
|
|
*/
|
|
cyc = ticks * CYC_PER_TICK + 1 + unannounced;
|
|
cyc += (CYC_PER_TICK - 1);
|
|
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
|
|
|
|
/* Due to elapsed time the calculation above might produce a
|
|
* duration that laps the counter. Don't let it.
|
|
*/
|
|
if (cyc > MAX_CYCLES) {
|
|
cyc = MAX_CYCLES;
|
|
}
|
|
|
|
cyc += last_count;
|
|
compare_set(0, cyc, sys_clock_timeout_handler, NULL);
|
|
}
|
|
|
|
uint32_t sys_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return 0;
|
|
}
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
uint32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK;
|
|
|
|
k_spin_unlock(&lock, key);
|
|
return ret;
|
|
}
|
|
|
|
uint32_t sys_clock_cycle_get_32(void)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&lock);
|
|
uint32_t ret = counter_sub(counter(), last_count) + last_count;
|
|
|
|
k_spin_unlock(&lock, key);
|
|
return ret;
|
|
}
|