zephyr/drivers/timer/nrf_rtc_timer.c
Krzysztof Chruscinski ab49673bc8 drivers: timer: nrf_rtc_timer: Change type of channel argument
There was an inconsistency in the API as z_nrf_rtc_timer_chan_alloc
returned int but other function were using uint32_t for channel
argument. Updated api to use int32_t everywhere.

Update nrf_802154 driver which was using this api to use int32_t.

Signed-off-by: Krzysztof Chruscinski <krzysztof.chruscinski@nordicsemi.no>
2021-03-25 15:54:49 +01:00

404 lines
10 KiB
C

/*
* Copyright (c) 2016-2017 Nordic Semiconductor ASA
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include <drivers/timer/system_timer.h>
#include <drivers/timer/nrf_rtc_timer.h>
#include <sys_clock.h>
#include <hal/nrf_rtc.h>
#include <spinlock.h>
#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)
#define RTC NRF_RTC1
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
#define RTC_LABEL rtc1
#define RTC_CH_COUNT RTC1_CC_NUM
BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels");
#define COUNTER_SPAN BIT(24)
#define COUNTER_MAX (COUNTER_SPAN - 1U)
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
static struct k_spinlock lock;
static uint32_t last_count;
struct z_nrf_rtc_timer_chan_data {
z_nrf_rtc_timer_compare_handler_t callback;
void *user_context;
};
static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
static atomic_t int_mask;
static atomic_t alloc_mask;
static uint32_t counter_sub(uint32_t a, uint32_t b)
{
return (a - b) & COUNTER_MAX;
}
static void set_comparator(int32_t chan, uint32_t cyc)
{
nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
}
static uint32_t get_comparator(int32_t chan)
{
return nrf_rtc_cc_get(RTC, chan);
}
static void event_clear(int32_t chan)
{
nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
}
static void event_enable(int32_t chan)
{
nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
static void event_disable(int32_t chan)
{
nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
static uint32_t counter(void)
{
return nrf_rtc_counter_get(RTC);
}
uint32_t z_nrf_rtc_timer_read(void)
{
return nrf_rtc_counter_get(RTC);
}
uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
{
__ASSERT_NO_MSG(chan < CHAN_COUNT);
return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
}
bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
return prev & BIT(chan);
}
void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
if (key) {
atomic_or(&int_mask, BIT(chan));
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
}
uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
{
__ASSERT_NO_MSG(chan < CHAN_COUNT);
return nrf_rtc_cc_get(RTC, chan);
}
int z_nrf_rtc_timer_get_ticks(k_timeout_t t)
{
uint32_t curr_count;
int64_t curr_tick;
int64_t result;
int64_t abs_ticks;
do {
curr_count = counter();
curr_tick = sys_clock_tick_get();
} while (curr_count != counter());
abs_ticks = Z_TICK_ABS(t.ticks);
if (abs_ticks < 0) {
/* relative timeout */
return (t.ticks > COUNTER_HALF_SPAN) ?
-EINVAL : ((curr_count + t.ticks) & COUNTER_MAX);
}
/* absolute timeout */
result = abs_ticks - curr_tick;
if ((result > COUNTER_HALF_SPAN) ||
(result < -(int64_t)COUNTER_HALF_SPAN)) {
return -EINVAL;
}
return (curr_count + result) & COUNTER_MAX;
}
/* Function safely sets absolute alarm. It assumes that provided value is
* less than COUNTER_HALF_SPAN from now. It detects late setting and also
* handle +1 cycle case.
*/
static void set_absolute_alarm(int32_t chan, uint32_t abs_val)
{
uint32_t now;
uint32_t now2;
uint32_t cc_val = abs_val & COUNTER_MAX;
uint32_t prev_cc = get_comparator(chan);
do {
now = counter();
/* Handle case when previous event may generate an event.
* It is handled by setting CC to now (far in the future),
* in case previous event was set for next tick wait for half
* LF tick and clear event that may have been generated.
*/
set_comparator(chan, now);
if (counter_sub(prev_cc, now) == 1) {
/* It should wait for half of RTC tick 15.26us. As
* busy wait runs from different clock source thus
* wait longer to cover for discrepancy.
*/
k_busy_wait(19);
}
/* If requested cc_val is in the past or next tick, set to 2
* ticks from now. RTC may not generate event if CC is set for
* 1 tick from now.
*/
if (counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) {
cc_val = now + 2;
}
event_clear(chan);
event_enable(chan);
set_comparator(chan, cc_val);
now2 = counter();
prev_cc = cc_val;
/* Rerun the algorithm if counter progressed during execution
* and cc_val is in the past or one tick from now. In such
* scenario, it is possible that event will not be generated.
* Reruning the algorithm will delay the alarm but ensure that
* event will be generated at the moment indicated by value in
* CC register.
*/
} while ((now2 != now) &&
(counter_sub(cc_val, now2 + 2) > COUNTER_HALF_SPAN));
}
static void compare_set(int32_t chan, uint32_t cc_value,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
cc_data[chan].callback = handler;
cc_data[chan].user_context = user_data;
set_absolute_alarm(chan, cc_value);
}
void z_nrf_rtc_timer_compare_set(int32_t chan, uint32_t cc_value,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
bool key = z_nrf_rtc_timer_compare_int_lock(chan);
compare_set(chan, cc_value, handler, user_data);
z_nrf_rtc_timer_compare_int_unlock(chan, key);
}
static void sys_clock_timeout_handler(int32_t chan,
uint32_t cc_value,
void *user_data)
{
uint32_t dticks = counter_sub(cc_value, last_count) / CYC_PER_TICK;
last_count += dticks * CYC_PER_TICK;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* protection is not needed because we are in the RTC interrupt
* so it won't get preempted by the interrupt.
*/
compare_set(chan, last_count + CYC_PER_TICK,
sys_clock_timeout_handler, NULL);
}
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
dticks : (dticks > 0));
}
/* Note: this function has public linkage, and MUST have this
* particular name. The platform architecture itself doesn't care,
* but there is a test (tests/arch/arm_irq_vector_table) that needs
* to find it to it can set it in a custom vector table. Should
* probably better abstract that at some point (e.g. query and reset
* it by pointer at runtime, maybe?) so we don't have this leaky
* symbol.
*/
void rtc_nrf_isr(const void *arg)
{
ARG_UNUSED(arg);
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan)) &&
nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan))) {
uint32_t cc_val;
z_nrf_rtc_timer_compare_handler_t handler;
event_clear(chan);
event_disable(chan);
cc_val = get_comparator(chan);
handler = cc_data[chan].callback;
cc_data[chan].callback = NULL;
if (handler) {
handler(chan, cc_val,
cc_data[chan].user_context);
}
}
}
}
int32_t z_nrf_rtc_timer_chan_alloc(void)
{
int32_t chan;
atomic_val_t prev;
do {
chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
if (chan < 0) {
return -ENOMEM;
}
prev = atomic_and(&alloc_mask, ~BIT(chan));
} while (!(prev & BIT(chan)));
return chan;
}
void z_nrf_rtc_timer_chan_free(int32_t chan)
{
__ASSERT_NO_MSG(chan && chan < CHAN_COUNT);
atomic_or(&alloc_mask, BIT(chan));
}
int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
static const enum nrf_lfclk_start_mode mode =
IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
CLOCK_CONTROL_NRF_LF_START_NOWAIT :
(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
CLOCK_CONTROL_NRF_LF_START_STABLE);
/* TODO: replace with counter driver to access RTC */
nrf_rtc_prescaler_set(RTC, 0);
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
NVIC_ClearPendingIRQ(RTC_IRQn);
IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
rtc_nrf_isr, 0, 0);
irq_enable(RTC_IRQn);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
int_mask = BIT_MASK(CHAN_COUNT);
if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
}
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
compare_set(0, counter() + CYC_PER_TICK,
sys_clock_timeout_handler, NULL);
}
z_nrf_clock_control_lf_on(mode);
return 0;
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint32_t cyc;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
uint32_t unannounced = counter_sub(counter(), last_count);
/* If we haven't announced for more than half the 24-bit wrap
* duration, then force an announce to avoid loss of a wrap
* event. This can happen if new timeouts keep being set
* before the existing one triggers the interrupt.
*/
if (unannounced >= COUNTER_HALF_SPAN) {
ticks = 0;
}
/* Get the cycles from last_count to the tick boundary after
* the requested ticks have passed starting now.
*/
cyc = ticks * CYC_PER_TICK + 1 + unannounced;
cyc += (CYC_PER_TICK - 1);
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
/* Due to elapsed time the calculation above might produce a
* duration that laps the counter. Don't let it.
*/
if (cyc > MAX_CYCLES) {
cyc = MAX_CYCLES;
}
cyc += last_count;
compare_set(0, cyc, sys_clock_timeout_handler, NULL);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t sys_clock_cycle_get_32(void)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = counter_sub(counter(), last_count) + last_count;
k_spin_unlock(&lock, key);
return ret;
}