5c170c7046
Trivila rename to thread_is_preempt. Signed-off-by: Anas Nashif <anas.nashif@intel.com>
132 lines
3.3 KiB
C
132 lines
3.3 KiB
C
/*
|
|
* Copyright (c) 2018, 2024 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <zephyr/kernel.h>
|
|
#include <kswap.h>
|
|
#include <ksched.h>
|
|
#include <ipi.h>
|
|
|
|
static int slice_ticks = DIV_ROUND_UP(CONFIG_TIMESLICE_SIZE * Z_HZ_ticks, Z_HZ_ms);
|
|
static int slice_max_prio = CONFIG_TIMESLICE_PRIORITY;
|
|
static struct _timeout slice_timeouts[CONFIG_MP_MAX_NUM_CPUS];
|
|
static bool slice_expired[CONFIG_MP_MAX_NUM_CPUS];
|
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
/* If z_swap() isn't atomic, then it's possible for a timer interrupt
|
|
* to try to timeslice away _current after it has already pended
|
|
* itself but before the corresponding context switch. Treat that as
|
|
* a noop condition in z_time_slice().
|
|
*/
|
|
struct k_thread *pending_current;
|
|
#endif
|
|
|
|
static inline int slice_time(struct k_thread *thread)
|
|
{
|
|
int ret = slice_ticks;
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
if (thread->base.slice_ticks != 0) {
|
|
ret = thread->base.slice_ticks;
|
|
}
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
bool thread_is_sliceable(struct k_thread *thread)
|
|
{
|
|
bool ret = thread_is_preemptible(thread)
|
|
&& slice_time(thread) != 0
|
|
&& !z_is_prio_higher(thread->base.prio, slice_max_prio)
|
|
&& !z_is_thread_prevented_from_running(thread)
|
|
&& !z_is_idle_thread_object(thread);
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
ret |= thread->base.slice_ticks != 0;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void slice_timeout(struct _timeout *timeout)
|
|
{
|
|
int cpu = ARRAY_INDEX(slice_timeouts, timeout);
|
|
|
|
slice_expired[cpu] = true;
|
|
|
|
/* We need an IPI if we just handled a timeslice expiration
|
|
* for a different CPU. Ideally this would be able to target
|
|
* the specific core, but that's not part of the API yet.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SMP) && cpu != _current_cpu->id) {
|
|
flag_ipi();
|
|
}
|
|
}
|
|
|
|
void z_reset_time_slice(struct k_thread *thread)
|
|
{
|
|
int cpu = _current_cpu->id;
|
|
|
|
z_abort_timeout(&slice_timeouts[cpu]);
|
|
slice_expired[cpu] = false;
|
|
if (thread_is_sliceable(thread)) {
|
|
z_add_timeout(&slice_timeouts[cpu], slice_timeout,
|
|
K_TICKS(slice_time(thread) - 1));
|
|
}
|
|
}
|
|
|
|
void k_sched_time_slice_set(int32_t slice, int prio)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
slice_ticks = k_ms_to_ticks_ceil32(slice);
|
|
slice_max_prio = prio;
|
|
z_reset_time_slice(_current);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
void k_thread_time_slice_set(struct k_thread *thread, int32_t thread_slice_ticks,
|
|
k_thread_timeslice_fn_t expired, void *data)
|
|
{
|
|
K_SPINLOCK(&_sched_spinlock) {
|
|
thread->base.slice_ticks = thread_slice_ticks;
|
|
thread->base.slice_expired = expired;
|
|
thread->base.slice_data = data;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Called out of each timer interrupt */
|
|
void z_time_slice(void)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock);
|
|
struct k_thread *curr = _current;
|
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC
|
|
if (pending_current == curr) {
|
|
z_reset_time_slice(curr);
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
return;
|
|
}
|
|
pending_current = NULL;
|
|
#endif
|
|
|
|
if (slice_expired[_current_cpu->id] && thread_is_sliceable(curr)) {
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD
|
|
if (curr->base.slice_expired) {
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
curr->base.slice_expired(curr, curr->base.slice_data);
|
|
key = k_spin_lock(&_sched_spinlock);
|
|
}
|
|
#endif
|
|
if (!z_is_thread_prevented_from_running(curr)) {
|
|
move_thread_to_end_of_prio_q(curr);
|
|
}
|
|
z_reset_time_slice(curr);
|
|
}
|
|
k_spin_unlock(&_sched_spinlock, key);
|
|
}
|