zephyr/drivers/timer/nrf_rtc_timer.c
Andrzej Głąbek ac96b86493 driver: nrf_rtc_timer: Remove unnecessary setting of comparator
Remove a piece of code that was supposed to bring an extra update
of the anchor value but which in fact was not able to provide it,
because of the target time checking performed in process_channel(),
and which is anyway unnecessary because the timeout span is limited
to MAX_CYCLES in sys_clock_set_timeout(), so the timeout handler is
guaranteed to be executed at least twice per each RTC overflow.

Signed-off-by: Andrzej Głąbek <andrzej.glabek@nordicsemi.no>
2023-01-17 17:00:16 +01:00

680 lines
17 KiB
C

/*
* Copyright (c) 2016-2021 Nordic Semiconductor ASA
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <soc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/drivers/timer/nrf_rtc_timer.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys_clock.h>
#include <hal/nrf_rtc.h>
#include <zephyr/irq.h>
#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)
#define RTC NRF_RTC1
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
#define RTC_LABEL rtc1
#define RTC_CH_COUNT RTC1_CC_NUM
BUILD_ASSERT(CHAN_COUNT <= RTC_CH_COUNT, "Not enough compare channels");
#define COUNTER_BIT_WIDTH 24U
#define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
#define COUNTER_MAX (COUNTER_SPAN - 1U)
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
#define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
#define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
#define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
#define TARGET_TIME_INVALID (UINT64_MAX)
static volatile uint32_t overflow_cnt;
static volatile uint64_t anchor;
static uint64_t last_count;
static bool sys_busy;
struct z_nrf_rtc_timer_chan_data {
z_nrf_rtc_timer_compare_handler_t callback;
void *user_context;
volatile uint64_t target_time;
};
static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
static atomic_t int_mask;
static atomic_t alloc_mask;
static atomic_t force_isr_mask;
static uint32_t counter_sub(uint32_t a, uint32_t b)
{
return (a - b) & COUNTER_MAX;
}
static void set_comparator(int32_t chan, uint32_t cyc)
{
nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
}
static bool event_check(int32_t chan)
{
return nrf_rtc_event_check(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
}
static void event_clear(int32_t chan)
{
nrf_rtc_event_clear(RTC, RTC_CHANNEL_EVENT_ADDR(chan));
}
static void event_enable(int32_t chan)
{
nrf_rtc_event_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
static void event_disable(int32_t chan)
{
nrf_rtc_event_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
static uint32_t counter(void)
{
return nrf_rtc_counter_get(RTC);
}
static uint32_t absolute_time_to_cc(uint64_t absolute_time)
{
/* 24 least significant bits represent target CC value */
return absolute_time & COUNTER_MAX;
}
static uint32_t full_int_lock(void)
{
uint32_t mcu_critical_state;
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
mcu_critical_state = __get_PRIMASK();
__disable_irq();
} else {
mcu_critical_state = irq_lock();
}
return mcu_critical_state;
}
static void full_int_unlock(uint32_t mcu_critical_state)
{
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
__set_PRIMASK(mcu_critical_state);
} else {
irq_unlock(mcu_critical_state);
}
}
uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
{
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
}
uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
{
#if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
if (chan == 0) {
return 0;
}
nrf_rtc_task_t task = offsetof(NRF_RTC_Type, TASKS_CAPTURE[chan]);
return nrf_rtc_task_address_get(RTC, task);
#else
ARG_UNUSED(chan);
return 0;
#endif
}
static bool compare_int_lock(int32_t chan)
{
atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
nrf_rtc_int_disable(RTC, RTC_CHANNEL_INT_MASK(chan));
__DMB();
__ISB();
return prev & BIT(chan);
}
bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
return compare_int_lock(chan);
}
static void compare_int_unlock(int32_t chan, bool key)
{
if (key) {
atomic_or(&int_mask, BIT(chan));
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
if (atomic_get(&force_isr_mask) & BIT(chan)) {
NVIC_SetPendingIRQ(RTC_IRQn);
}
}
}
void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
compare_int_unlock(chan, key);
}
uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
{
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
return nrf_rtc_cc_get(RTC, chan);
}
uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
{
uint64_t curr_time;
int64_t curr_tick;
int64_t result;
int64_t abs_ticks;
do {
curr_time = z_nrf_rtc_timer_read();
curr_tick = sys_clock_tick_get();
} while (curr_time != z_nrf_rtc_timer_read());
abs_ticks = Z_TICK_ABS(t.ticks);
if (abs_ticks < 0) {
/* relative timeout */
return (t.ticks > COUNTER_SPAN) ?
-EINVAL : (curr_time + t.ticks);
}
/* absolute timeout */
result = abs_ticks - curr_tick;
if (result > COUNTER_SPAN) {
return -EINVAL;
}
return curr_time + result;
}
/** @brief Function safely sets absolute alarm.
*
* It assumes that provided value is less than COUNTER_HALF_SPAN from now.
* It detects late setting and also handle +1 cycle case.
*
* @param[in] chan A channel for which a new CC value is to be set.
*
* @param[in] abs_val An absolute value of CC register to be set.
*/
static void set_absolute_alarm(int32_t chan, uint32_t abs_val)
{
uint32_t cc_val = abs_val & COUNTER_MAX;
uint32_t cc_inc = 2;
/* Disable event routing for the channel to avoid getting a COMPARE
* event for the previous CC value before the new one takes effect
* (however, even if such spurious event was generated, it would be
* properly filtered out in process_channel(), where the target time
* is checked).
* Clear also the event as it may already be generated at this point.
*/
event_disable(chan);
event_clear(chan);
for (;;) {
uint32_t now;
set_comparator(chan, cc_val);
/* Enable event routing after the required CC value was set.
* Even though the above operation may get repeated (see below),
* there is no need to disable event routing in every iteration
* of the loop, as the COMPARE event resulting from any attempt
* of setting the CC register is acceptable (as mentioned above,
* process_channel() does the proper filtering).
*/
event_enable(chan);
now = counter();
/* RTC may not generate a COMPARE event if its COUNTER value
* is N and a given CC register is set to N or N+1. If it turns
* out that the above configuration of the comparator resulted
* in such CC value or even in a value that is considered to be
* from the past, repeat the operation using a CC value that is
* guaranteed to generate the event. Start with 2 RTC ticks from
* now and if that fails (because the operation gets delayed),
* go even futher in the next attempt.
* But if the COMPARE event turns out to be already generated,
* there is obviously no need to continue the loop.
*/
if ((counter_sub(cc_val, now + 2) > COUNTER_HALF_SPAN) &&
!event_check(chan)) {
cc_val = now + cc_inc;
cc_inc++;
} else {
break;
}
}
}
static int compare_set_nolocks(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
int ret = 0;
uint32_t cc_value = absolute_time_to_cc(target_time);
uint64_t curr_time = z_nrf_rtc_timer_read();
if (curr_time < target_time) {
if (target_time - curr_time > COUNTER_SPAN) {
/* Target time is too distant. */
return -EINVAL;
}
if (target_time != cc_data[chan].target_time) {
/* Target time is valid and is different than currently set.
* Set CC value.
*/
set_absolute_alarm(chan, cc_value);
}
} else {
/* Force ISR handling when exiting from critical section. */
atomic_or(&force_isr_mask, BIT(chan));
}
cc_data[chan].target_time = target_time;
cc_data[chan].callback = handler;
cc_data[chan].user_context = user_data;
return ret;
}
static int compare_set(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
bool key;
key = compare_int_lock(chan);
int ret = compare_set_nolocks(chan, target_time, handler, user_data);
compare_int_unlock(chan, key);
return ret;
}
int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
return compare_set(chan, target_time, handler, user_data);
}
void z_nrf_rtc_timer_abort(int32_t chan)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
bool key = compare_int_lock(chan);
cc_data[chan].target_time = TARGET_TIME_INVALID;
event_clear(chan);
event_disable(chan);
(void)atomic_and(&force_isr_mask, ~BIT(chan));
compare_int_unlock(chan, key);
}
uint64_t z_nrf_rtc_timer_read(void)
{
uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;
__DMB();
uint32_t cntr = counter();
val += cntr;
if (cntr < OVERFLOW_RISK_RANGE_END) {
/* `overflow_cnt` can have incorrect value due to still unhandled overflow or
* due to possibility that this code preempted overflow interrupt before final write
* of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
* `anchor` is considered valid and stable. Because of this timing there is no risk
* of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
*/
if (val < anchor) {
/* Unhandled overflow, detected, let's add correction */
val += COUNTER_SPAN;
}
} else {
/* `overflow_cnt` is considered valid and stable in this range, no need to
* check validity using `anchor`
*/
}
return val;
}
static inline bool in_anchor_range(uint32_t cc_value)
{
return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
}
static inline void anchor_update(uint32_t cc_value)
{
/* Update anchor when far from overflow */
if (in_anchor_range(cc_value)) {
/* In this range `overflow_cnt` is considered valid and stable.
* Write of 64-bit `anchor` is non atomic. However it happens
* far in time from the moment the `anchor` is read in
* `z_nrf_rtc_timer_read`.
*/
anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
}
}
static void sys_clock_timeout_handler(int32_t chan,
uint64_t expire_time,
void *user_data)
{
uint32_t cc_value = absolute_time_to_cc(expire_time);
uint64_t dticks = (expire_time - last_count) / CYC_PER_TICK;
last_count += dticks * CYC_PER_TICK;
anchor_update(cc_value);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* protection is not needed because we are in the RTC interrupt
* so it won't get preempted by the interrupt.
*/
compare_set(chan, last_count + CYC_PER_TICK,
sys_clock_timeout_handler, NULL);
}
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
(int32_t)dticks : (dticks > 0));
}
static bool channel_processing_check_and_clear(int32_t chan)
{
bool result = false;
uint32_t mcu_critical_state = full_int_lock();
if (nrf_rtc_int_enable_check(RTC, RTC_CHANNEL_INT_MASK(chan))) {
/* The processing of channel can be caused by CC match
* or be forced.
*/
result = atomic_and(&force_isr_mask, ~BIT(chan)) ||
event_check(chan);
if (result) {
event_clear(chan);
}
}
full_int_unlock(mcu_critical_state);
return result;
}
static void process_channel(int32_t chan)
{
if (channel_processing_check_and_clear(chan)) {
void *user_context;
uint32_t mcu_critical_state;
uint64_t curr_time;
uint64_t expire_time;
z_nrf_rtc_timer_compare_handler_t handler = NULL;
curr_time = z_nrf_rtc_timer_read();
/* This critical section is used to provide atomic access to
* cc_data structure and prevent higher priority contexts
* (including ZLIs) from overwriting it.
*/
mcu_critical_state = full_int_lock();
/* If target_time is in the past or is equal to current time
* value, execute the handler.
*/
expire_time = cc_data[chan].target_time;
if (curr_time >= expire_time) {
handler = cc_data[chan].callback;
user_context = cc_data[chan].user_context;
cc_data[chan].callback = NULL;
cc_data[chan].target_time = TARGET_TIME_INVALID;
event_disable(chan);
/* Because of the way set_absolute_alarm() sets the CC
* register, it may turn out that another COMPARE event
* has been generated for the same alarm. Make sure the
* event is cleared, so that the ISR is not executed
* again unnecessarily.
*/
event_clear(chan);
}
full_int_unlock(mcu_critical_state);
if (handler) {
handler(chan, expire_time, user_context);
}
}
}
/* Note: this function has public linkage, and MUST have this
* particular name. The platform architecture itself doesn't care,
* but there is a test (tests/arch/arm_irq_vector_table) that needs
* to find it to it can set it in a custom vector table. Should
* probably better abstract that at some point (e.g. query and reset
* it by pointer at runtime, maybe?) so we don't have this leaky
* symbol.
*/
void rtc_nrf_isr(const void *arg)
{
ARG_UNUSED(arg);
if (nrf_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
nrf_rtc_event_check(RTC, NRF_RTC_EVENT_OVERFLOW)) {
nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_OVERFLOW);
overflow_cnt++;
}
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
process_channel(chan);
}
}
int32_t z_nrf_rtc_timer_chan_alloc(void)
{
int32_t chan;
atomic_val_t prev;
do {
chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
if (chan < 0) {
return -ENOMEM;
}
prev = atomic_and(&alloc_mask, ~BIT(chan));
} while (!(prev & BIT(chan)));
return chan;
}
void z_nrf_rtc_timer_chan_free(int32_t chan)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
atomic_or(&alloc_mask, BIT(chan));
}
int z_nrf_rtc_timer_trigger_overflow(void)
{
uint32_t mcu_critical_state;
int err = 0;
if (!IS_ENABLED(CONFIG_NRF_RTC_TIMER_TRIGGER_OVERFLOW) ||
(CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT > 0)) {
return -ENOTSUP;
}
mcu_critical_state = full_int_lock();
if (sys_busy) {
err = -EBUSY;
goto bail;
}
if (counter() >= (COUNTER_SPAN - 100)) {
err = -EAGAIN;
goto bail;
}
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_TRIGGER_OVERFLOW);
k_busy_wait(80);
uint64_t now = z_nrf_rtc_timer_read();
if (err == 0) {
sys_clock_timeout_handler(0, now, NULL);
}
bail:
full_int_unlock(mcu_critical_state);
return err;
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint32_t cyc;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
if (ticks == K_TICKS_FOREVER) {
cyc = MAX_TICKS * CYC_PER_TICK;
sys_busy = false;
} else {
/* Value of ticks can be zero or negative, what means "announce
* the next tick" (the same as ticks equal to 1).
*/
cyc = CLAMP(ticks, 1, (int32_t)MAX_TICKS);
cyc *= CYC_PER_TICK;
sys_busy = true;
}
uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;
/* If we haven't announced for more than half the 24-bit wrap
* duration, then force an announce to avoid loss of a wrap
* event. This can happen if new timeouts keep being set
* before the existing one triggers the interrupt.
*/
if (unannounced >= COUNTER_HALF_SPAN) {
cyc = 0;
}
/* Get the cycles from last_count to the tick boundary after
* the requested ticks have passed starting now.
*/
cyc += unannounced;
cyc = ceiling_fraction(cyc, CYC_PER_TICK) * CYC_PER_TICK;
/* Due to elapsed time the calculation above might produce a
* duration that laps the counter. Don't let it.
* This limitation also guarantees that the anchor will be properly
* updated before every overflow (see anchor_update()).
*/
if (cyc > MAX_CYCLES) {
cyc = MAX_CYCLES;
}
uint64_t target_time = cyc + last_count;
compare_set(0, target_time, sys_clock_timeout_handler, NULL);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)z_nrf_rtc_timer_read();
}
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
static const enum nrf_lfclk_start_mode mode =
IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
CLOCK_CONTROL_NRF_LF_START_NOWAIT :
(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
CLOCK_CONTROL_NRF_LF_START_STABLE);
/* TODO: replace with counter driver to access RTC */
nrf_rtc_prescaler_set(RTC, 0);
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
cc_data[chan].target_time = TARGET_TIME_INVALID;
nrf_rtc_int_enable(RTC, RTC_CHANNEL_INT_MASK(chan));
}
nrf_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);
NVIC_ClearPendingIRQ(RTC_IRQn);
IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
rtc_nrf_isr, 0, 0);
irq_enable(RTC_IRQn);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
int_mask = BIT_MASK(CHAN_COUNT);
if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
}
uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
MAX_TICKS : (counter() + CYC_PER_TICK);
compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL);
z_nrf_clock_control_lf_on(mode);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);