zephyr/drivers/timer/riscv_machine_timer.c
Piotr Zięcik 0c0c0d93ea drivers: timer: Do not use CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
On some SoCs the frequency of the system clock is obtained at run time
as the exact configuration of the hardware is not known at compile time.
On such platforms using CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC define
directly introduces timing errors.

This commit replaces CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC by the call
to inline function sys_clock_hw_cycles_per_sec() which always returns
correct frequency of the system clock.

Signed-off-by: Piotr Zięcik <piotr.ziecik@nordicsemi.no>
2019-07-24 15:10:02 +02:00

136 lines
3.2 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <soc.h>
#define CYC_PER_TICK ((u32_t)((u64_t)sys_clock_hw_cycles_per_sec() \
/ (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC))
#define MAX_TICKS ((0xffffffffu - CYC_PER_TICK) / CYC_PER_TICK)
#define MIN_DELAY 1000
#define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && \
!IS_ENABLED(CONFIG_QEMU_TICKLESS_WORKAROUND))
static struct k_spinlock lock;
static u64_t last_count;
static void set_mtimecmp(u64_t time)
{
volatile u32_t *r = (u32_t *)RISCV_MTIMECMP_BASE;
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit,
* but are NOT internally latched for multiword transfers. So
* we have to be careful about sequencing to avoid triggering
* spurious interrupts: always set the high word to a max
* value first.
*/
r[1] = 0xffffffff;
r[0] = (u32_t)time;
r[1] = (u32_t)(time >> 32);
}
static u64_t mtime(void)
{
volatile u32_t *r = (u32_t *)RISCV_MTIME_BASE;
u32_t lo, hi;
/* Likewise, must guard against rollover when reading */
do {
hi = r[1];
lo = r[0];
} while (r[1] != hi);
return (((u64_t)hi) << 32) | lo;
}
static void timer_isr(void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
u64_t now = mtime();
u32_t dticks = (u32_t)((now - last_count) / CYC_PER_TICK);
last_count += dticks * CYC_PER_TICK;
if (!TICKLESS) {
u64_t next = last_count + CYC_PER_TICK;
if ((s64_t)(next - now) < MIN_DELAY) {
next += CYC_PER_TICK;
}
set_mtimecmp(next);
}
k_spin_unlock(&lock, key);
z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1);
}
int z_clock_driver_init(struct device *device)
{
IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0, timer_isr, NULL, 0);
set_mtimecmp(mtime() + CYC_PER_TICK);
irq_enable(RISCV_MACHINE_TIMER_IRQ);
return 0;
}
void z_clock_set_timeout(s32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_QEMU_TICKLESS_WORKAROUND)
/* RISCV has no idle handler yet, so if we try to spin on the
* logic below to reset the comparator, we'll always bump it
* forward to the "next tick" due to MIN_DELAY handling and
* the interrupt will never fire! Just rely on the fact that
* the OS gave us the proper timeout already.
*/
if (idle) {
return;
}
ticks = ticks == K_FOREVER ? MAX_TICKS : ticks;
ticks = MAX(MIN(ticks - 1, (s32_t)MAX_TICKS), 0);
k_spinlock_key_t key = k_spin_lock(&lock);
u64_t now = mtime();
u32_t cyc = ticks * CYC_PER_TICK;
/* Round up to next tick boundary. Note use of 32 bit math,
* max_ticks is calibrated to permit this.
*/
cyc += (u32_t)(now - last_count) + (CYC_PER_TICK - 1);
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
if ((s32_t)(cyc + last_count - now) < MIN_DELAY) {
cyc += CYC_PER_TICK;
}
set_mtimecmp(cyc + last_count);
k_spin_unlock(&lock, key);
#endif
}
u32_t z_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
u32_t ret = ((u32_t)mtime() - (u32_t)last_count) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
u32_t z_timer_cycle_get_32(void)
{
return (u32_t)mtime();
}