2b1106a407
Since the rbtree is using as list because we no longer can assume that the object pointer is the address of the data field in the dynamic object struct, lets just use the already existent dlist for tracking dynamic kernel objects. Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
1016 lines
24 KiB
C
1016 lines
24 KiB
C
/*
|
|
* Copyright (c) 2017 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <string.h>
|
|
#include <zephyr/sys/math_extras.h>
|
|
#include <zephyr/sys/rb.h>
|
|
#include <zephyr/kernel_structs.h>
|
|
#include <zephyr/sys/sys_io.h>
|
|
#include <ksched.h>
|
|
#include <zephyr/syscall.h>
|
|
#include <zephyr/syscall_handler.h>
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/init.h>
|
|
#include <stdbool.h>
|
|
#include <zephyr/app_memory/app_memdomain.h>
|
|
#include <zephyr/sys/libc-hooks.h>
|
|
#include <zephyr/sys/mutex.h>
|
|
#include <inttypes.h>
|
|
#include <zephyr/linker/linker-defs.h>
|
|
|
|
#ifdef Z_LIBC_PARTITION_EXISTS
|
|
K_APPMEM_PARTITION_DEFINE(z_libc_partition);
|
|
#endif
|
|
|
|
/* TODO: Find a better place to put this. Since we pull the entire
|
|
* lib..__modules__crypto__mbedtls.a globals into app shared memory
|
|
* section, we can't put this in zephyr_init.c of the mbedtls module.
|
|
*/
|
|
#ifdef CONFIG_MBEDTLS
|
|
K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition);
|
|
#endif
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
/* The originally synchronization strategy made heavy use of recursive
|
|
* irq_locking, which ports poorly to spinlocks which are
|
|
* non-recursive. Rather than try to redesign as part of
|
|
* spinlockification, this uses multiple locks to preserve the
|
|
* original semantics exactly. The locks are named for the data they
|
|
* protect where possible, or just for the code that uses them where
|
|
* not.
|
|
*/
|
|
#ifdef CONFIG_DYNAMIC_OBJECTS
|
|
static struct k_spinlock lists_lock; /* kobj dlist */
|
|
static struct k_spinlock objfree_lock; /* k_object_free */
|
|
|
|
#ifdef CONFIG_GEN_PRIV_STACKS
|
|
/* On ARM MPU we may have two different alignment requirement
|
|
* when dynamically allocating thread stacks, one for the privileged
|
|
* stack and other for the user stack, so we need to account the
|
|
* worst alignment scenario and reserve space for that.
|
|
*/
|
|
#ifdef CONFIG_ARM_MPU
|
|
#define STACK_ELEMENT_DATA_SIZE(size) \
|
|
(sizeof(struct z_stack_data) + CONFIG_PRIVILEGED_STACK_SIZE + \
|
|
Z_THREAD_STACK_OBJ_ALIGN(size) + Z_THREAD_STACK_SIZE_ADJUST(size))
|
|
#else
|
|
#define STACK_ELEMENT_DATA_SIZE(size) (sizeof(struct z_stack_data) + \
|
|
Z_THREAD_STACK_SIZE_ADJUST(size))
|
|
#endif /* CONFIG_ARM_MPU */
|
|
#else
|
|
#define STACK_ELEMENT_DATA_SIZE(size) Z_THREAD_STACK_SIZE_ADJUST(size)
|
|
#endif /* CONFIG_GEN_PRIV_STACKS */
|
|
|
|
#endif
|
|
static struct k_spinlock obj_lock; /* kobj struct data */
|
|
|
|
#define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8)
|
|
|
|
#ifdef CONFIG_DYNAMIC_OBJECTS
|
|
extern uint8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES];
|
|
#endif
|
|
|
|
static void clear_perms_cb(struct z_object *ko, void *ctx_ptr);
|
|
|
|
const char *otype_to_str(enum k_objects otype)
|
|
{
|
|
const char *ret;
|
|
/* -fdata-sections doesn't work right except in very very recent
|
|
* GCC and these literal strings would appear in the binary even if
|
|
* otype_to_str was omitted by the linker
|
|
*/
|
|
#ifdef CONFIG_LOG
|
|
switch (otype) {
|
|
/* otype-to-str.h is generated automatically during build by
|
|
* gen_kobject_list.py
|
|
*/
|
|
case K_OBJ_ANY:
|
|
ret = "generic";
|
|
break;
|
|
#include <otype-to-str.h>
|
|
default:
|
|
ret = "?";
|
|
break;
|
|
}
|
|
#else
|
|
ARG_UNUSED(otype);
|
|
ret = NULL;
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
struct perm_ctx {
|
|
int parent_id;
|
|
int child_id;
|
|
struct k_thread *parent;
|
|
};
|
|
|
|
#ifdef CONFIG_GEN_PRIV_STACKS
|
|
/* See write_gperf_table() in scripts/build/gen_kobject_list.py. The privilege
|
|
* mode stacks are allocated as an array. The base of the array is
|
|
* aligned to Z_PRIVILEGE_STACK_ALIGN, and all members must be as well.
|
|
*/
|
|
uint8_t *z_priv_stack_find(k_thread_stack_t *stack)
|
|
{
|
|
struct z_object *obj = z_object_find(stack);
|
|
|
|
__ASSERT(obj != NULL, "stack object not found");
|
|
__ASSERT(obj->type == K_OBJ_THREAD_STACK_ELEMENT,
|
|
"bad stack object");
|
|
|
|
return obj->data.stack_data->priv;
|
|
}
|
|
#endif /* CONFIG_GEN_PRIV_STACKS */
|
|
|
|
#ifdef CONFIG_DYNAMIC_OBJECTS
|
|
|
|
/*
|
|
* Note that dyn_obj->data is where the kernel object resides
|
|
* so it is the one that actually needs to be aligned.
|
|
* Due to the need to get the the fields inside struct dyn_obj
|
|
* from kernel object pointers (i.e. from data[]), the offset
|
|
* from data[] needs to be fixed at build time. Therefore,
|
|
* data[] is declared with __aligned(), such that when dyn_obj
|
|
* is allocated with alignment, data[] is also aligned.
|
|
* Due to this requirement, data[] needs to be aligned with
|
|
* the maximum alignment needed for all kernel objects
|
|
* (hence the following DYN_OBJ_DATA_ALIGN).
|
|
*/
|
|
#ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT
|
|
#define DYN_OBJ_DATA_ALIGN_K_THREAD (ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT)
|
|
#else
|
|
#define DYN_OBJ_DATA_ALIGN_K_THREAD (sizeof(void *))
|
|
#endif
|
|
|
|
#ifdef CONFIG_DYNAMIC_THREAD_STACK_SIZE
|
|
#ifndef CONFIG_MPU_STACK_GUARD
|
|
#define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
|
|
Z_THREAD_STACK_OBJ_ALIGN(CONFIG_PRIVILEGED_STACK_SIZE)
|
|
#else
|
|
#define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
|
|
Z_THREAD_STACK_OBJ_ALIGN(CONFIG_DYNAMIC_THREAD_STACK_SIZE)
|
|
#endif /* !CONFIG_MPU_STACK_GUARD */
|
|
#else
|
|
#define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
|
|
Z_THREAD_STACK_OBJ_ALIGN(ARCH_STACK_PTR_ALIGN)
|
|
#endif /* CONFIG_DYNAMIC_THREAD_STACK_SIZE */
|
|
|
|
#define DYN_OBJ_DATA_ALIGN \
|
|
MAX(DYN_OBJ_DATA_ALIGN_K_THREAD, (sizeof(void *)))
|
|
|
|
struct dyn_obj_base {
|
|
struct z_object kobj;
|
|
sys_dnode_t dobj_list; /* must be immediately before data member */
|
|
};
|
|
|
|
struct dyn_obj {
|
|
struct dyn_obj_base base;
|
|
|
|
/* The object itself */
|
|
uint8_t data[] __aligned(DYN_OBJ_DATA_ALIGN_K_THREAD);
|
|
};
|
|
|
|
/* Thread stacks impose a very restrict alignment. Use this alignment
|
|
* (generally page size) for all objects will cause a lot waste memory.
|
|
*/
|
|
struct dyn_obj_stack {
|
|
struct dyn_obj_base base;
|
|
|
|
/* The object itself */
|
|
void *data;
|
|
};
|
|
|
|
extern struct z_object *z_object_gperf_find(const void *obj);
|
|
extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
|
|
void *context);
|
|
|
|
/*
|
|
* Linked list of allocated kernel objects, for iteration over all allocated
|
|
* objects (and potentially deleting them during iteration).
|
|
*/
|
|
static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list);
|
|
|
|
/*
|
|
* TODO: Write some hash table code that will replace obj_list.
|
|
*/
|
|
|
|
static size_t obj_size_get(enum k_objects otype)
|
|
{
|
|
size_t ret;
|
|
|
|
switch (otype) {
|
|
#include <otype-to-size.h>
|
|
default:
|
|
ret = sizeof(const struct device);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static size_t obj_align_get(enum k_objects otype)
|
|
{
|
|
size_t ret;
|
|
|
|
switch (otype) {
|
|
case K_OBJ_THREAD:
|
|
#ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT
|
|
ret = ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT;
|
|
#else
|
|
ret = __alignof(struct dyn_obj);
|
|
#endif
|
|
break;
|
|
case K_OBJ_THREAD_STACK_ELEMENT:
|
|
ret = __alignof(struct dyn_obj_stack);
|
|
break;
|
|
default:
|
|
ret = __alignof(struct dyn_obj);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct dyn_obj_base *dyn_object_find(void *obj)
|
|
{
|
|
struct dyn_obj_base *node;
|
|
k_spinlock_key_t key;
|
|
|
|
/* For any dynamically allocated kernel object, the object
|
|
* pointer is just a member of the containing struct dyn_obj,
|
|
* so just a little arithmetic is necessary to locate the
|
|
* corresponding struct rbnode
|
|
*/
|
|
key = k_spin_lock(&lists_lock);
|
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(&obj_list, node, dobj_list) {
|
|
if (node->kobj.name == obj) {
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/* No object found */
|
|
node = NULL;
|
|
|
|
end:
|
|
k_spin_unlock(&lists_lock, key);
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* @internal
|
|
*
|
|
* @brief Allocate a new thread index for a new thread.
|
|
*
|
|
* This finds an unused thread index that can be assigned to a new
|
|
* thread. If too many threads have been allocated, the kernel will
|
|
* run out of indexes and this function will fail.
|
|
*
|
|
* Note that if an unused index is found, that index will be marked as
|
|
* used after return of this function.
|
|
*
|
|
* @param tidx The new thread index if successful
|
|
*
|
|
* @return true if successful, false if failed
|
|
**/
|
|
static bool thread_idx_alloc(uintptr_t *tidx)
|
|
{
|
|
int i;
|
|
int idx;
|
|
int base;
|
|
|
|
base = 0;
|
|
for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
|
|
idx = find_lsb_set(_thread_idx_map[i]);
|
|
|
|
if (idx != 0) {
|
|
*tidx = base + (idx - 1);
|
|
|
|
sys_bitfield_clear_bit((mem_addr_t)_thread_idx_map,
|
|
*tidx);
|
|
|
|
/* Clear permission from all objects */
|
|
z_object_wordlist_foreach(clear_perms_cb,
|
|
(void *)*tidx);
|
|
|
|
return true;
|
|
}
|
|
|
|
base += 8;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @internal
|
|
*
|
|
* @brief Free a thread index.
|
|
*
|
|
* This frees a thread index so it can be used by another
|
|
* thread.
|
|
*
|
|
* @param tidx The thread index to be freed
|
|
**/
|
|
static void thread_idx_free(uintptr_t tidx)
|
|
{
|
|
/* To prevent leaked permission when index is recycled */
|
|
z_object_wordlist_foreach(clear_perms_cb, (void *)tidx);
|
|
|
|
sys_bitfield_set_bit((mem_addr_t)_thread_idx_map, tidx);
|
|
}
|
|
|
|
static struct z_object *dynamic_object_create(enum k_objects otype, size_t align,
|
|
size_t size)
|
|
{
|
|
struct dyn_obj_base *dyn;
|
|
|
|
if (otype == K_OBJ_THREAD_STACK_ELEMENT) {
|
|
struct dyn_obj_stack *stack;
|
|
size_t adjusted_size;
|
|
|
|
if (size == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
adjusted_size = STACK_ELEMENT_DATA_SIZE(size);
|
|
stack = z_thread_aligned_alloc(align, sizeof(struct dyn_obj_stack));
|
|
if (stack == NULL) {
|
|
return NULL;
|
|
}
|
|
dyn = &stack->base;
|
|
|
|
stack->data = z_thread_aligned_alloc(DYN_OBJ_DATA_ALIGN_K_THREAD_STACK,
|
|
adjusted_size);
|
|
if (stack->data == NULL) {
|
|
k_free(stack);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_GEN_PRIV_STACKS
|
|
struct z_stack_data *stack_data = (struct z_stack_data *)
|
|
((uint8_t *)stack->data + adjusted_size - sizeof(*stack_data));
|
|
stack_data->priv = (uint8_t *)stack->data;
|
|
dyn->kobj.data.stack_data = stack_data;
|
|
#ifdef CONFIG_ARM_MPU
|
|
dyn->kobj.name = (void *)ROUND_UP(
|
|
((uint8_t *)stack->data + CONFIG_PRIVILEGED_STACK_SIZE),
|
|
Z_THREAD_STACK_OBJ_ALIGN(size));
|
|
#else
|
|
dyn->kobj.name = stack->data;
|
|
#endif
|
|
#else
|
|
dyn->kobj.name = stack->data;
|
|
#endif
|
|
} else {
|
|
struct dyn_obj *obj;
|
|
|
|
obj = z_thread_aligned_alloc(align,
|
|
sizeof(struct dyn_obj) + obj_size_get(otype) + size);
|
|
if (obj == NULL) {
|
|
return NULL;
|
|
}
|
|
dyn = &obj->base;
|
|
dyn->kobj.name = &obj->data;
|
|
}
|
|
|
|
dyn->kobj.type = otype;
|
|
dyn->kobj.flags = 0;
|
|
(void)memset(dyn->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lists_lock);
|
|
|
|
sys_dlist_append(&obj_list, &dyn->dobj_list);
|
|
k_spin_unlock(&lists_lock, key);
|
|
|
|
return &dyn->kobj;
|
|
}
|
|
|
|
struct z_object *z_dynamic_object_aligned_create(size_t align, size_t size)
|
|
{
|
|
struct z_object *obj = dynamic_object_create(K_OBJ_ANY, align, size);
|
|
|
|
if (obj == NULL) {
|
|
LOG_ERR("could not allocate kernel object, out of memory");
|
|
}
|
|
|
|
return obj;
|
|
}
|
|
|
|
static void *z_object_alloc(enum k_objects otype, size_t size)
|
|
{
|
|
struct z_object *zo;
|
|
uintptr_t tidx = 0;
|
|
|
|
if (otype <= K_OBJ_ANY || otype >= K_OBJ_LAST) {
|
|
LOG_ERR("bad object type %d requested", otype);
|
|
return NULL;
|
|
}
|
|
|
|
switch (otype) {
|
|
case K_OBJ_THREAD:
|
|
if (!thread_idx_alloc(&tidx)) {
|
|
LOG_ERR("out of free thread indexes");
|
|
return NULL;
|
|
}
|
|
break;
|
|
/* The following are currently not allowed at all */
|
|
case K_OBJ_FUTEX: /* Lives in user memory */
|
|
case K_OBJ_SYS_MUTEX: /* Lives in user memory */
|
|
case K_OBJ_NET_SOCKET: /* Indeterminate size */
|
|
LOG_ERR("forbidden object type '%s' requested",
|
|
otype_to_str(otype));
|
|
return NULL;
|
|
default:
|
|
/* Remainder within bounds are permitted */
|
|
break;
|
|
}
|
|
|
|
zo = dynamic_object_create(otype, obj_align_get(otype), size);
|
|
if (zo == NULL) {
|
|
if (otype == K_OBJ_THREAD) {
|
|
thread_idx_free(tidx);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
if (otype == K_OBJ_THREAD) {
|
|
zo->data.thread_id = tidx;
|
|
}
|
|
|
|
/* The allocating thread implicitly gets permission on kernel objects
|
|
* that it allocates
|
|
*/
|
|
z_thread_perms_set(zo, _current);
|
|
|
|
/* Activates reference counting logic for automatic disposal when
|
|
* all permissions have been revoked
|
|
*/
|
|
zo->flags |= K_OBJ_FLAG_ALLOC;
|
|
|
|
return zo->name;
|
|
}
|
|
|
|
void *z_impl_k_object_alloc(enum k_objects otype)
|
|
{
|
|
return z_object_alloc(otype, 0);
|
|
}
|
|
|
|
void *z_impl_k_object_alloc_size(enum k_objects otype, size_t size)
|
|
{
|
|
return z_object_alloc(otype, size);
|
|
}
|
|
|
|
void k_object_free(void *obj)
|
|
{
|
|
struct dyn_obj_base *dyn;
|
|
|
|
/* This function is intentionally not exposed to user mode.
|
|
* There's currently no robust way to track that an object isn't
|
|
* being used by some other thread
|
|
*/
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&objfree_lock);
|
|
|
|
dyn = dyn_object_find(obj);
|
|
if (dyn != NULL) {
|
|
sys_dlist_remove(&dyn->dobj_list);
|
|
|
|
if (dyn->kobj.type == K_OBJ_THREAD) {
|
|
thread_idx_free(dyn->kobj.data.thread_id);
|
|
}
|
|
}
|
|
k_spin_unlock(&objfree_lock, key);
|
|
|
|
if (dyn != NULL) {
|
|
k_free(dyn);
|
|
}
|
|
}
|
|
|
|
struct z_object *z_object_find(const void *obj)
|
|
{
|
|
struct z_object *ret;
|
|
|
|
ret = z_object_gperf_find(obj);
|
|
|
|
if (ret == NULL) {
|
|
struct dyn_obj_base *dyn;
|
|
|
|
/* The cast to pointer-to-non-const violates MISRA
|
|
* 11.8 but is justified since we know dynamic objects
|
|
* were not declared with a const qualifier.
|
|
*/
|
|
dyn = dyn_object_find((void *)obj);
|
|
if (dyn != NULL) {
|
|
ret = &dyn->kobj;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void z_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
|
|
{
|
|
struct dyn_obj_base *obj, *next;
|
|
|
|
z_object_gperf_wordlist_foreach(func, context);
|
|
|
|
k_spinlock_key_t key = k_spin_lock(&lists_lock);
|
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, dobj_list) {
|
|
func(&obj->kobj, context);
|
|
}
|
|
k_spin_unlock(&lists_lock, key);
|
|
}
|
|
#endif /* CONFIG_DYNAMIC_OBJECTS */
|
|
|
|
static unsigned int thread_index_get(struct k_thread *thread)
|
|
{
|
|
struct z_object *ko;
|
|
|
|
ko = z_object_find(thread);
|
|
|
|
if (ko == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
return ko->data.thread_id;
|
|
}
|
|
|
|
static void unref_check(struct z_object *ko, uintptr_t index)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&obj_lock);
|
|
|
|
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
|
|
|
|
#ifdef CONFIG_DYNAMIC_OBJECTS
|
|
if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) {
|
|
/* skip unref check for static kernel object */
|
|
goto out;
|
|
}
|
|
|
|
void *vko = ko;
|
|
|
|
struct dyn_obj_base *dyn = CONTAINER_OF(vko, struct dyn_obj_base, kobj);
|
|
|
|
__ASSERT(IS_PTR_ALIGNED(dyn, struct dyn_obj), "unaligned z_object");
|
|
|
|
for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
|
|
if (ko->perms[i] != 0U) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* This object has no more references. Some objects may have
|
|
* dynamically allocated resources, require cleanup, or need to be
|
|
* marked as uninitailized when all references are gone. What
|
|
* specifically needs to happen depends on the object type.
|
|
*/
|
|
switch (ko->type) {
|
|
#ifdef CONFIG_PIPES
|
|
case K_OBJ_PIPE:
|
|
k_pipe_cleanup((struct k_pipe *)ko->name);
|
|
break;
|
|
#endif
|
|
case K_OBJ_MSGQ:
|
|
k_msgq_cleanup((struct k_msgq *)ko->name);
|
|
break;
|
|
case K_OBJ_STACK:
|
|
k_stack_cleanup((struct k_stack *)ko->name);
|
|
break;
|
|
default:
|
|
/* Nothing to do */
|
|
break;
|
|
}
|
|
|
|
sys_dlist_remove(&dyn->dobj_list);
|
|
k_free(dyn);
|
|
out:
|
|
#endif
|
|
k_spin_unlock(&obj_lock, key);
|
|
}
|
|
|
|
static void wordlist_cb(struct z_object *ko, void *ctx_ptr)
|
|
{
|
|
struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;
|
|
|
|
if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
|
|
(struct k_thread *)ko->name != ctx->parent) {
|
|
sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
|
|
}
|
|
}
|
|
|
|
void z_thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
|
|
{
|
|
struct perm_ctx ctx = {
|
|
thread_index_get(parent),
|
|
thread_index_get(child),
|
|
parent
|
|
};
|
|
|
|
if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
|
|
z_object_wordlist_foreach(wordlist_cb, &ctx);
|
|
}
|
|
}
|
|
|
|
void z_thread_perms_set(struct z_object *ko, struct k_thread *thread)
|
|
{
|
|
int index = thread_index_get(thread);
|
|
|
|
if (index != -1) {
|
|
sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
|
|
}
|
|
}
|
|
|
|
void z_thread_perms_clear(struct z_object *ko, struct k_thread *thread)
|
|
{
|
|
int index = thread_index_get(thread);
|
|
|
|
if (index != -1) {
|
|
sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
|
|
unref_check(ko, index);
|
|
}
|
|
}
|
|
|
|
static void clear_perms_cb(struct z_object *ko, void *ctx_ptr)
|
|
{
|
|
uintptr_t id = (uintptr_t)ctx_ptr;
|
|
|
|
unref_check(ko, id);
|
|
}
|
|
|
|
void z_thread_perms_all_clear(struct k_thread *thread)
|
|
{
|
|
uintptr_t index = thread_index_get(thread);
|
|
|
|
if ((int)index != -1) {
|
|
z_object_wordlist_foreach(clear_perms_cb, (void *)index);
|
|
}
|
|
}
|
|
|
|
static int thread_perms_test(struct z_object *ko)
|
|
{
|
|
int index;
|
|
|
|
if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) {
|
|
return 1;
|
|
}
|
|
|
|
index = thread_index_get(_current);
|
|
if (index != -1) {
|
|
return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void dump_permission_error(struct z_object *ko)
|
|
{
|
|
int index = thread_index_get(_current);
|
|
LOG_ERR("thread %p (%d) does not have permission on %s %p",
|
|
_current, index,
|
|
otype_to_str(ko->type), ko->name);
|
|
LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap");
|
|
}
|
|
|
|
void z_dump_object_error(int retval, const void *obj, struct z_object *ko,
|
|
enum k_objects otype)
|
|
{
|
|
switch (retval) {
|
|
case -EBADF:
|
|
LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype));
|
|
if (ko == NULL) {
|
|
LOG_ERR("address is not a known kernel object");
|
|
} else {
|
|
LOG_ERR("address is actually a %s",
|
|
otype_to_str(ko->type));
|
|
}
|
|
break;
|
|
case -EPERM:
|
|
dump_permission_error(ko);
|
|
break;
|
|
case -EINVAL:
|
|
LOG_ERR("%p used before initialization", obj);
|
|
break;
|
|
case -EADDRINUSE:
|
|
LOG_ERR("%p %s in use", obj, otype_to_str(otype));
|
|
break;
|
|
default:
|
|
/* Not handled error */
|
|
break;
|
|
}
|
|
}
|
|
|
|
void z_impl_k_object_access_grant(const void *object, struct k_thread *thread)
|
|
{
|
|
struct z_object *ko = z_object_find(object);
|
|
|
|
if (ko != NULL) {
|
|
z_thread_perms_set(ko, thread);
|
|
}
|
|
}
|
|
|
|
void k_object_access_revoke(const void *object, struct k_thread *thread)
|
|
{
|
|
struct z_object *ko = z_object_find(object);
|
|
|
|
if (ko != NULL) {
|
|
z_thread_perms_clear(ko, thread);
|
|
}
|
|
}
|
|
|
|
void z_impl_k_object_release(const void *object)
|
|
{
|
|
k_object_access_revoke(object, _current);
|
|
}
|
|
|
|
void k_object_access_all_grant(const void *object)
|
|
{
|
|
struct z_object *ko = z_object_find(object);
|
|
|
|
if (ko != NULL) {
|
|
ko->flags |= K_OBJ_FLAG_PUBLIC;
|
|
}
|
|
}
|
|
|
|
int z_object_validate(struct z_object *ko, enum k_objects otype,
|
|
enum _obj_init_check init)
|
|
{
|
|
if (unlikely((ko == NULL) ||
|
|
(otype != K_OBJ_ANY && ko->type != otype))) {
|
|
return -EBADF;
|
|
}
|
|
|
|
/* Manipulation of any kernel objects by a user thread requires that
|
|
* thread be granted access first, even for uninitialized objects
|
|
*/
|
|
if (unlikely(thread_perms_test(ko) == 0)) {
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Initialization state checks. _OBJ_INIT_ANY, we don't care */
|
|
if (likely(init == _OBJ_INIT_TRUE)) {
|
|
/* Object MUST be initialized */
|
|
if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) {
|
|
return -EINVAL;
|
|
}
|
|
} else if (init == _OBJ_INIT_FALSE) { /* _OBJ_INIT_FALSE case */
|
|
/* Object MUST NOT be initialized */
|
|
if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) {
|
|
return -EADDRINUSE;
|
|
}
|
|
} else {
|
|
/* _OBJ_INIT_ANY */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void z_object_init(const void *obj)
|
|
{
|
|
struct z_object *ko;
|
|
|
|
/* By the time we get here, if the caller was from userspace, all the
|
|
* necessary checks have been done in z_object_validate(), which takes
|
|
* place before the object is initialized.
|
|
*
|
|
* This function runs after the object has been initialized and
|
|
* finalizes it
|
|
*/
|
|
|
|
ko = z_object_find(obj);
|
|
if (ko == NULL) {
|
|
/* Supervisor threads can ignore rules about kernel objects
|
|
* and may declare them on stacks, etc. Such objects will never
|
|
* be usable from userspace, but we shouldn't explode.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Allows non-initialization system calls to be made on this object */
|
|
ko->flags |= K_OBJ_FLAG_INITIALIZED;
|
|
}
|
|
|
|
void z_object_recycle(const void *obj)
|
|
{
|
|
struct z_object *ko = z_object_find(obj);
|
|
|
|
if (ko != NULL) {
|
|
(void)memset(ko->perms, 0, sizeof(ko->perms));
|
|
z_thread_perms_set(ko, k_current_get());
|
|
ko->flags |= K_OBJ_FLAG_INITIALIZED;
|
|
}
|
|
}
|
|
|
|
void z_object_uninit(const void *obj)
|
|
{
|
|
struct z_object *ko;
|
|
|
|
/* See comments in z_object_init() */
|
|
ko = z_object_find(obj);
|
|
if (ko == NULL) {
|
|
return;
|
|
}
|
|
|
|
ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
|
|
}
|
|
|
|
/*
|
|
* Copy to/from helper functions used in syscall handlers
|
|
*/
|
|
void *z_user_alloc_from_copy(const void *src, size_t size)
|
|
{
|
|
void *dst = NULL;
|
|
|
|
/* Does the caller in user mode have access to read this memory? */
|
|
if (Z_SYSCALL_MEMORY_READ(src, size)) {
|
|
goto out_err;
|
|
}
|
|
|
|
dst = z_thread_malloc(size);
|
|
if (dst == NULL) {
|
|
LOG_ERR("out of thread resource pool memory (%zu)", size);
|
|
goto out_err;
|
|
}
|
|
|
|
(void)memcpy(dst, src, size);
|
|
out_err:
|
|
return dst;
|
|
}
|
|
|
|
static int user_copy(void *dst, const void *src, size_t size, bool to_user)
|
|
{
|
|
int ret = EFAULT;
|
|
|
|
/* Does the caller in user mode have access to this memory? */
|
|
if (to_user ? Z_SYSCALL_MEMORY_WRITE(dst, size) :
|
|
Z_SYSCALL_MEMORY_READ(src, size)) {
|
|
goto out_err;
|
|
}
|
|
|
|
(void)memcpy(dst, src, size);
|
|
ret = 0;
|
|
out_err:
|
|
return ret;
|
|
}
|
|
|
|
int z_user_from_copy(void *dst, const void *src, size_t size)
|
|
{
|
|
return user_copy(dst, src, size, false);
|
|
}
|
|
|
|
int z_user_to_copy(void *dst, const void *src, size_t size)
|
|
{
|
|
return user_copy(dst, src, size, true);
|
|
}
|
|
|
|
char *z_user_string_alloc_copy(const char *src, size_t maxlen)
|
|
{
|
|
size_t actual_len;
|
|
int err;
|
|
char *ret = NULL;
|
|
|
|
actual_len = z_user_string_nlen(src, maxlen, &err);
|
|
if (err != 0) {
|
|
goto out;
|
|
}
|
|
if (actual_len == maxlen) {
|
|
/* Not NULL terminated */
|
|
LOG_ERR("string too long %p (%zu)", src, actual_len);
|
|
goto out;
|
|
}
|
|
if (size_add_overflow(actual_len, 1, &actual_len)) {
|
|
LOG_ERR("overflow");
|
|
goto out;
|
|
}
|
|
|
|
ret = z_user_alloc_from_copy(src, actual_len);
|
|
|
|
/* Someone may have modified the source string during the above
|
|
* checks. Ensure what we actually copied is still terminated
|
|
* properly.
|
|
*/
|
|
if (ret != NULL) {
|
|
ret[actual_len - 1U] = '\0';
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int z_user_string_copy(char *dst, const char *src, size_t maxlen)
|
|
{
|
|
size_t actual_len;
|
|
int ret, err;
|
|
|
|
actual_len = z_user_string_nlen(src, maxlen, &err);
|
|
if (err != 0) {
|
|
ret = EFAULT;
|
|
goto out;
|
|
}
|
|
if (actual_len == maxlen) {
|
|
/* Not NULL terminated */
|
|
LOG_ERR("string too long %p (%zu)", src, actual_len);
|
|
ret = EINVAL;
|
|
goto out;
|
|
}
|
|
if (size_add_overflow(actual_len, 1, &actual_len)) {
|
|
LOG_ERR("overflow");
|
|
ret = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = z_user_from_copy(dst, src, actual_len);
|
|
|
|
/* See comment above in z_user_string_alloc_copy() */
|
|
dst[actual_len - 1] = '\0';
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Application memory region initialization
|
|
*/
|
|
|
|
extern char __app_shmem_regions_start[];
|
|
extern char __app_shmem_regions_end[];
|
|
|
|
static int app_shmem_bss_zero(void)
|
|
{
|
|
struct z_app_region *region, *end;
|
|
|
|
|
|
end = (struct z_app_region *)&__app_shmem_regions_end;
|
|
region = (struct z_app_region *)&__app_shmem_regions_start;
|
|
|
|
for ( ; region < end; region++) {
|
|
#if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
|
|
/* When BSS sections are not present at boot, we need to wait for
|
|
* paging mechanism to be initialized before we can zero out BSS.
|
|
*/
|
|
extern bool z_sys_post_kernel;
|
|
bool do_clear = z_sys_post_kernel;
|
|
|
|
/* During pre-kernel init, z_sys_post_kernel == false, but
|
|
* with pinned rodata region, so clear. Otherwise skip.
|
|
* In post-kernel init, z_sys_post_kernel == true,
|
|
* skip those in pinned rodata region as they have already
|
|
* been cleared and possibly already in use. Otherwise clear.
|
|
*/
|
|
if (((uint8_t *)region->bss_start >= (uint8_t *)_app_smem_pinned_start) &&
|
|
((uint8_t *)region->bss_start < (uint8_t *)_app_smem_pinned_end)) {
|
|
do_clear = !do_clear;
|
|
}
|
|
|
|
if (do_clear)
|
|
#endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
|
|
{
|
|
(void)memset(region->bss_start, 0, region->bss_size);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT_NAMED(app_shmem_bss_zero_pre, app_shmem_bss_zero,
|
|
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
|
|
|
|
#if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
|
|
/* When BSS sections are not present at boot, we need to wait for
|
|
* paging mechanism to be initialized before we can zero out BSS.
|
|
*/
|
|
SYS_INIT_NAMED(app_shmem_bss_zero_post, app_shmem_bss_zero,
|
|
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
|
|
#endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
|
|
|
|
/*
|
|
* Default handlers if otherwise unimplemented
|
|
*/
|
|
|
|
static uintptr_t handler_bad_syscall(uintptr_t bad_id, uintptr_t arg2,
|
|
uintptr_t arg3, uintptr_t arg4,
|
|
uintptr_t arg5, uintptr_t arg6,
|
|
void *ssf)
|
|
{
|
|
LOG_ERR("Bad system call id %" PRIuPTR " invoked", bad_id);
|
|
arch_syscall_oops(ssf);
|
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
|
|
}
|
|
|
|
static uintptr_t handler_no_syscall(uintptr_t arg1, uintptr_t arg2,
|
|
uintptr_t arg3, uintptr_t arg4,
|
|
uintptr_t arg5, uintptr_t arg6, void *ssf)
|
|
{
|
|
LOG_ERR("Unimplemented system call");
|
|
arch_syscall_oops(ssf);
|
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
|
|
}
|
|
|
|
#include <syscall_dispatch.c>
|