zephyr/lib/os/mem_blocks.c
Gerard Marull-Paretas 79e6b0e0f6 includes: prefer <zephyr/kernel.h> over <zephyr/zephyr.h>
As of today <zephyr/zephyr.h> is 100% equivalent to <zephyr/kernel.h>.
This patch proposes to then include <zephyr/kernel.h> instead of
<zephyr/zephyr.h> since it is more clear that you are including the
Kernel APIs and (probably) nothing else. <zephyr/zephyr.h> sounds like a
catch-all header that may be confusing. Most applications need to
include a bunch of other things to compile, e.g. driver headers or
subsystem headers like BT, logging, etc.

The idea of a catch-all header in Zephyr is probably not feasible
anyway. Reason is that Zephyr is not a library, like it could be for
example `libpython`. Zephyr provides many utilities nowadays: a kernel,
drivers, subsystems, etc and things will likely grow. A catch-all header
would be massive, difficult to keep up-to-date. It is also likely that
an application will only build a small subset. Note that subsystem-level
headers may use a catch-all approach to make things easier, though.

NOTE: This patch is **NOT** removing the header, just removing its usage
in-tree. I'd advocate for its deprecation (add a #warning on it), but I
understand many people will have concerns.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2022-09-05 16:31:47 +02:00

446 lines
9.2 KiB
C

/*
* Copyright (c) 2021 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/check.h>
#include <zephyr/sys/heap_listener.h>
#include <zephyr/sys/mem_blocks.h>
#include <zephyr/sys/util.h>
static void *alloc_blocks(sys_mem_blocks_t *mem_block, size_t num_blocks)
{
size_t offset;
int r;
uint8_t *blk;
void *ret = NULL;
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
k_spinlock_key_t key = k_spin_lock(&mem_block->lock);
#endif
/* Find an unallocated block */
r = sys_bitarray_alloc(mem_block->bitmap, num_blocks, &offset);
if (r == 0) {
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
mem_block->used_blocks += (uint32_t)num_blocks;
if (mem_block->max_used_blocks < mem_block->used_blocks) {
mem_block->max_used_blocks = mem_block->used_blocks;
}
k_spin_unlock(&mem_block->lock, key);
#endif
/* Calculate the start address of the newly allocated block */
blk = mem_block->buffer + (offset << mem_block->blk_sz_shift);
ret = blk;
}
return ret;
}
static int free_blocks(sys_mem_blocks_t *mem_block, void *ptr, size_t num_blocks)
{
size_t offset;
uint8_t *blk = ptr;
int ret = 0;
/* Make sure incoming block is within the mem_block buffer */
if (blk < mem_block->buffer) {
ret = -EFAULT;
goto out;
}
offset = (blk - mem_block->buffer) >> mem_block->blk_sz_shift;
if (offset >= mem_block->num_blocks) {
ret = -EFAULT;
goto out;
}
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
k_spinlock_key_t key = k_spin_lock(&mem_block->lock);
#endif
ret = sys_bitarray_free(mem_block->bitmap, num_blocks, offset);
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
if (ret == 0) {
mem_block->used_blocks -= (uint32_t) num_blocks;
}
k_spin_unlock(&mem_block->lock, key);
#endif
out:
return ret;
}
int sys_mem_blocks_alloc_contiguous(sys_mem_blocks_t *mem_block, size_t count,
void **out_block)
{
int ret = 0;
__ASSERT_NO_MSG(mem_block != NULL);
__ASSERT_NO_MSG(out_block != NULL);
if (count == 0) {
/* Nothing to allocate */
*out_block = NULL;
goto out;
}
if (count > mem_block->num_blocks) {
/* Definitely not enough blocks to be allocated */
ret = -ENOMEM;
goto out;
}
void *ptr = alloc_blocks(mem_block, count);
if (ptr == NULL) {
ret = -ENOMEM;
goto out;
}
*out_block = ptr;
#ifdef CONFIG_SYS_MEM_BLOCKS_LISTENER
heap_listener_notify_alloc(HEAP_ID_FROM_POINTER(mem_block),
ptr, count << mem_block->blk_sz_shift);
#endif
out:
return ret;
}
int sys_mem_blocks_alloc(sys_mem_blocks_t *mem_block, size_t count,
void **out_blocks)
{
int ret = 0;
int i;
__ASSERT_NO_MSG(mem_block != NULL);
__ASSERT_NO_MSG(out_blocks != NULL);
__ASSERT_NO_MSG(mem_block->bitmap != NULL);
__ASSERT_NO_MSG(mem_block->buffer != NULL);
if (count == 0) {
/* Nothing to allocate */
goto out;
}
if (count > mem_block->num_blocks) {
/* Definitely not enough blocks to be allocated */
ret = -ENOMEM;
goto out;
}
for (i = 0; i < count; i++) {
void *ptr = alloc_blocks(mem_block, 1);
if (ptr == NULL) {
break;
}
out_blocks[i] = ptr;
#ifdef CONFIG_SYS_MEM_BLOCKS_LISTENER
heap_listener_notify_alloc(HEAP_ID_FROM_POINTER(mem_block),
ptr, BIT(mem_block->blk_sz_shift));
#endif
}
/* If error, free already allocated blocks. */
if (i < count) {
(void)sys_mem_blocks_free(mem_block, i, out_blocks);
ret = -ENOMEM;
}
out:
return ret;
}
int sys_mem_blocks_is_region_free(sys_mem_blocks_t *mem_block, void *in_block, size_t count)
{
bool result;
size_t offset;
__ASSERT_NO_MSG(mem_block != NULL);
__ASSERT_NO_MSG(mem_block->bitmap != NULL);
__ASSERT_NO_MSG(mem_block->buffer != NULL);
offset = ((uint8_t *)in_block - mem_block->buffer) >> mem_block->blk_sz_shift;
__ASSERT_NO_MSG(offset + count <= mem_block->num_blocks);
result = sys_bitarray_is_region_cleared(mem_block->bitmap, count, offset);
return result;
}
int sys_mem_blocks_get(sys_mem_blocks_t *mem_block, void *in_block, size_t count)
{
int ret = 0;
int offset;
__ASSERT_NO_MSG(mem_block != NULL);
__ASSERT_NO_MSG(mem_block->bitmap != NULL);
__ASSERT_NO_MSG(mem_block->buffer != NULL);
if (count == 0) {
/* Nothing to allocate */
goto out;
}
offset = ((uint8_t *)in_block - mem_block->buffer) >> mem_block->blk_sz_shift;
if (offset + count > mem_block->num_blocks) {
/* Definitely not enough blocks to be allocated */
ret = -ENOMEM;
goto out;
}
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
k_spinlock_key_t key = k_spin_lock(&mem_block->lock);
#endif
ret = sys_bitarray_test_and_set_region(mem_block->bitmap, count, offset, true);
if (ret != 0) {
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
k_spin_unlock(&mem_block->lock, key);
#endif
ret = -ENOMEM;
goto out;
}
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
mem_block->used_blocks += (uint32_t)count;
if (mem_block->max_used_blocks < mem_block->used_blocks) {
mem_block->max_used_blocks = mem_block->used_blocks;
}
k_spin_unlock(&mem_block->lock, key);
#endif
#ifdef CONFIG_SYS_MEM_BLOCKS_LISTENER
heap_listener_notify_alloc(HEAP_ID_FROM_POINTER(mem_block),
in_block, count << mem_block->blk_sz_shift);
#endif
out:
return ret;
}
int sys_mem_blocks_free(sys_mem_blocks_t *mem_block, size_t count,
void **in_blocks)
{
int ret = 0;
int i;
__ASSERT_NO_MSG(mem_block != NULL);
__ASSERT_NO_MSG(in_blocks != NULL);
__ASSERT_NO_MSG(mem_block->bitmap != NULL);
__ASSERT_NO_MSG(mem_block->buffer != NULL);
if (count == 0) {
/* Nothing to be freed. */
goto out;
}
if (count > mem_block->num_blocks) {
ret = -EINVAL;
goto out;
}
for (i = 0; i < count; i++) {
void *ptr = in_blocks[i];
int r = free_blocks(mem_block, ptr, 1);
if (r != 0) {
ret = r;
}
#ifdef CONFIG_SYS_MEM_BLOCKS_LISTENER
else {
/*
* Since we do not keep track of failed free ops,
* we need to notify free one-by-one, instead of
* notifying at the end of function.
*/
heap_listener_notify_free(HEAP_ID_FROM_POINTER(mem_block),
ptr, BIT(mem_block->blk_sz_shift));
}
#endif
}
out:
return ret;
}
int sys_mem_blocks_free_contiguous(sys_mem_blocks_t *mem_block, void *block, size_t count)
{
int ret = 0;
__ASSERT_NO_MSG(mem_block != NULL);
__ASSERT_NO_MSG(mem_block->bitmap != NULL);
__ASSERT_NO_MSG(mem_block->buffer != NULL);
if (count == 0) {
/* Nothing to be freed. */
goto out;
}
if (count > mem_block->num_blocks) {
ret = -EINVAL;
goto out;
}
ret = free_blocks(mem_block, block, count);
if (ret != 0) {
goto out;
}
#ifdef CONFIG_SYS_MEM_BLOCKS_LISTENER
heap_listener_notify_free(HEAP_ID_FROM_POINTER(mem_block),
block, count << mem_block->blk_sz_shift);
#endif
out:
return ret;
}
void sys_multi_mem_blocks_init(sys_multi_mem_blocks_t *group,
sys_multi_mem_blocks_choice_fn_t choice_fn)
{
group->num_allocators = 0;
group->choice_fn = choice_fn;
}
void sys_multi_mem_blocks_add_allocator(sys_multi_mem_blocks_t *group,
sys_mem_blocks_t *alloc)
{
__ASSERT_NO_MSG(group->num_allocators < ARRAY_SIZE(group->allocators));
group->allocators[group->num_allocators++] = alloc;
}
int sys_multi_mem_blocks_alloc(sys_multi_mem_blocks_t *group,
void *cfg, size_t count,
void **out_blocks,
size_t *blk_size)
{
sys_mem_blocks_t *allocator;
int ret = 0;
__ASSERT_NO_MSG(group != NULL);
__ASSERT_NO_MSG(out_blocks != NULL);
if (count == 0) {
if (blk_size != NULL) {
*blk_size = 0;
}
goto out;
}
allocator = group->choice_fn(group, cfg);
if (allocator == NULL) {
ret = -EINVAL;
goto out;
}
if (count > allocator->num_blocks) {
ret = -ENOMEM;
goto out;
}
ret = sys_mem_blocks_alloc(allocator, count, out_blocks);
if ((ret == 0) && (blk_size != NULL)) {
*blk_size = BIT(allocator->blk_sz_shift);
}
out:
return ret;
}
int sys_multi_mem_blocks_free(sys_multi_mem_blocks_t *group,
size_t count, void **in_blocks)
{
int i;
int ret = 0;
sys_mem_blocks_t *allocator = NULL;
__ASSERT_NO_MSG(group != NULL);
__ASSERT_NO_MSG(in_blocks != NULL);
if (count == 0) {
goto out;
}
for (i = 0; i < group->num_allocators; i++) {
/*
* Find out which allocator the allocated blocks
* belong to.
*/
uint8_t *start, *end;
sys_mem_blocks_t *one_alloc;
one_alloc = group->allocators[i];
start = one_alloc->buffer;
end = start + (BIT(one_alloc->blk_sz_shift) * one_alloc->num_blocks);
if (((uint8_t *)in_blocks[0] >= start) &&
((uint8_t *)in_blocks[0] < end)) {
allocator = one_alloc;
break;
}
}
if (allocator != NULL) {
ret = sys_mem_blocks_free(allocator, count, in_blocks);
} else {
ret = -EINVAL;
}
out:
return ret;
}
#ifdef CONFIG_SYS_MEM_BLOCKS_RUNTIME_STATS
int sys_mem_blocks_runtime_stats_get(sys_mem_blocks_t *mem_block,
struct sys_memory_stats *stats)
{
if ((mem_block == NULL) || (stats == NULL)) {
return -EINVAL;
}
stats->allocated_bytes = mem_block->used_blocks <<
mem_block->blk_sz_shift;
stats->free_bytes = (mem_block->num_blocks << mem_block->blk_sz_shift) -
stats->allocated_bytes;
stats->max_allocated_bytes = mem_block->max_used_blocks <<
mem_block->blk_sz_shift;
return 0;
}
int sys_mem_blocks_runtime_stats_reset_max(sys_mem_blocks_t *mem_block)
{
if (mem_block == NULL) {
return -EINVAL;
}
mem_block->max_used_blocks = mem_block->used_blocks;
return 0;
}
#endif