zephyr/kernel/mem_domain.c
Andrew Boie bc35b0b780 userspace: add optional member to memory domains
Some systems may need to associate arch-specific data to
a memory domain. Add a Kconfig and `arch` field for this,
and a new arch API to initialize it.

Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
2020-08-20 13:58:54 -04:00

284 lines
6.8 KiB
C

/*
* Copyright (c) 2017 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <init.h>
#include <kernel.h>
#include <kernel_structs.h>
#include <kernel_internal.h>
#include <sys/__assert.h>
#include <stdbool.h>
#include <spinlock.h>
#define LOG_LEVEL CONFIG_KERNEL_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_DECLARE(os);
static struct k_spinlock lock;
static uint8_t max_partitions;
#if (defined(CONFIG_EXECUTE_XOR_WRITE) || \
defined(CONFIG_MPU_REQUIRES_NON_OVERLAPPING_REGIONS)) && __ASSERT_ON
static bool sane_partition(const struct k_mem_partition *part,
const struct k_mem_partition *parts,
uint32_t num_parts)
{
bool exec, write;
uint32_t last;
uint32_t i;
last = part->start + part->size - 1;
exec = K_MEM_PARTITION_IS_EXECUTABLE(part->attr);
write = K_MEM_PARTITION_IS_WRITABLE(part->attr);
if (exec && write) {
__ASSERT(false,
"partition is writable and executable <start %lx>",
part->start);
return false;
}
for (i = 0U; i < num_parts; i++) {
bool cur_write, cur_exec;
uint32_t cur_last;
cur_last = parts[i].start + parts[i].size - 1;
if (last < parts[i].start || cur_last < part->start) {
continue;
}
#if defined(CONFIG_MPU_REQUIRES_NON_OVERLAPPING_REGIONS)
/* Partitions overlap */
__ASSERT(false, "overlapping partitions <%lx...%x>, <%lx...%x>",
part->start, last,
parts[i].start, cur_last);
return false;
#endif
cur_write = K_MEM_PARTITION_IS_WRITABLE(parts[i].attr);
cur_exec = K_MEM_PARTITION_IS_EXECUTABLE(parts[i].attr);
if ((cur_write && exec) || (cur_exec && write)) {
__ASSERT(false, "overlapping partitions are "
"writable and executable "
"<%lx...%x>, <%lx...%x>",
part->start, last,
parts[i].start, cur_last);
return false;
}
}
return true;
}
static inline bool sane_partition_domain(const struct k_mem_domain *domain,
const struct k_mem_partition *part)
{
return sane_partition(part, domain->partitions,
domain->num_partitions);
}
#else
#define sane_partition(...) (true)
#define sane_partition_domain(...) (true)
#endif
static void partition_asserts(struct k_mem_domain *domain,
struct k_mem_partition *part)
{
__ASSERT(domain != NULL, "null domain");
__ASSERT(part != NULL, "null partition");
__ASSERT(part->size != 0, "zero sized partition at %p with base 0x%lx",
part, part->start);
__ASSERT((part->start + part->size) > part->start,
"invalid partition %p, wraparound detected. base 0x%lx size %zu",
part, part->start, part->size);
#if defined(CONFIG_EXECUTE_XOR_WRITE) || \
defined(CONFIG_MPU_REQUIRES_NON_OVERLAPPING_REGIONS)
__ASSERT(sane_partition_domain(domain, part),
"domain check failed");
#endif
}
void k_mem_domain_init(struct k_mem_domain *domain, uint8_t num_parts,
struct k_mem_partition *parts[])
{
k_spinlock_key_t key;
__ASSERT(domain != NULL, "");
__ASSERT(num_parts == 0U || parts != NULL, "");
__ASSERT(num_parts <= max_partitions, "");
key = k_spin_lock(&lock);
domain->num_partitions = 0U;
(void)memset(domain->partitions, 0, sizeof(domain->partitions));
if (num_parts != 0U) {
uint32_t i;
for (i = 0U; i < num_parts; i++) {
partition_asserts(domain, parts[i]);
domain->partitions[i] = *parts[i];
domain->num_partitions++;
}
}
sys_dlist_init(&domain->mem_domain_q);
#ifdef CONFIG_ARCH_MEM_DOMAIN_DATA
int ret = arch_mem_domain_init(domain);
/* TODO propagate return values, see #24609.
*
* Not using an assertion here as this is a memory allocation error
*/
if (ret != 0) {
LOG_ERR("architecture-specific initialization failed for domain %p with %d",
domain, ret);
k_panic();
}
#endif
k_spin_unlock(&lock, key);
}
void k_mem_domain_destroy(struct k_mem_domain *domain)
{
k_spinlock_key_t key;
sys_dnode_t *node, *next_node;
__ASSERT(domain != NULL, "");
key = k_spin_lock(&lock);
arch_mem_domain_destroy(domain);
SYS_DLIST_FOR_EACH_NODE_SAFE(&domain->mem_domain_q, node, next_node) {
struct k_thread *thread =
CONTAINER_OF(node, struct k_thread, mem_domain_info);
sys_dlist_remove(&thread->mem_domain_info.mem_domain_q_node);
thread->mem_domain_info.mem_domain = NULL;
}
k_spin_unlock(&lock, key);
}
void k_mem_domain_add_partition(struct k_mem_domain *domain,
struct k_mem_partition *part)
{
int p_idx;
k_spinlock_key_t key;
partition_asserts(domain, part);
key = k_spin_lock(&lock);
for (p_idx = 0; p_idx < max_partitions; p_idx++) {
/* A zero-sized partition denotes it's a free partition */
if (domain->partitions[p_idx].size == 0U) {
break;
}
}
/* Assert if there is no free partition */
__ASSERT(p_idx < max_partitions, "");
domain->partitions[p_idx].start = part->start;
domain->partitions[p_idx].size = part->size;
domain->partitions[p_idx].attr = part->attr;
domain->num_partitions++;
arch_mem_domain_partition_add(domain, p_idx);
k_spin_unlock(&lock, key);
}
void k_mem_domain_remove_partition(struct k_mem_domain *domain,
struct k_mem_partition *part)
{
int p_idx;
k_spinlock_key_t key;
__ASSERT(domain != NULL, "");
__ASSERT(part != NULL, "");
key = k_spin_lock(&lock);
/* find a partition that matches the given start and size */
for (p_idx = 0; p_idx < max_partitions; p_idx++) {
if (domain->partitions[p_idx].start == part->start &&
domain->partitions[p_idx].size == part->size) {
break;
}
}
/* Assert if not found */
__ASSERT(p_idx < max_partitions, "no matching partition found");
arch_mem_domain_partition_remove(domain, p_idx);
/* A zero-sized partition denotes it's a free partition */
domain->partitions[p_idx].size = 0U;
domain->num_partitions--;
k_spin_unlock(&lock, key);
}
void k_mem_domain_add_thread(struct k_mem_domain *domain, k_tid_t thread)
{
k_spinlock_key_t key;
__ASSERT(domain != NULL, "");
__ASSERT(thread != NULL, "");
__ASSERT(thread->mem_domain_info.mem_domain == NULL,
"mem domain unset");
key = k_spin_lock(&lock);
sys_dlist_append(&domain->mem_domain_q,
&thread->mem_domain_info.mem_domain_q_node);
thread->mem_domain_info.mem_domain = domain;
arch_mem_domain_thread_add(thread);
k_spin_unlock(&lock, key);
}
void k_mem_domain_remove_thread(k_tid_t thread)
{
k_spinlock_key_t key;
__ASSERT(thread != NULL, "");
__ASSERT(thread->mem_domain_info.mem_domain != NULL, "mem domain set");
key = k_spin_lock(&lock);
arch_mem_domain_thread_remove(thread);
sys_dlist_remove(&thread->mem_domain_info.mem_domain_q_node);
thread->mem_domain_info.mem_domain = NULL;
k_spin_unlock(&lock, key);
}
static int init_mem_domain_module(struct device *arg)
{
ARG_UNUSED(arg);
max_partitions = arch_mem_domain_max_partitions_get();
/*
* max_partitions must be less than or equal to
* CONFIG_MAX_DOMAIN_PARTITIONS, or would encounter array index
* out of bounds error.
*/
__ASSERT(max_partitions <= CONFIG_MAX_DOMAIN_PARTITIONS, "");
return 0;
}
SYS_INIT(init_mem_domain_module, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);