6b57b3b786
Refactor the ESP32 target SOCs together with all related boards. Most braking changes includes: - changing the CONFIG_SOC_ESP32* to refer to the actual soc line (esp32,esp32s2,esp32s3,esp32c3) - replacing CONFIG_SOC with the CONFIG_SOC_SERIES - creating CONFIG_SOC_FAMILY_ESP32 to embrace all the ESP32 across all used architectures - introducing CONFIG_SOC_PART_NUMBER_* to provide a SOC model config - introducing the 'common' folder to hide all commonly used configs and files. - updating west.yml to reflect previous changes in hal Signed-off-by: Marek Matej <marek.matej@espressif.com>
1022 lines
28 KiB
C
1022 lines
28 KiB
C
/*
|
|
* Copyright (c) 2019 Mohamed ElShahawi (extremegtx@hotmail.com)
|
|
* Copyright (c) 2023 Espressif Systems (Shanghai) Co., Ltd.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT espressif_esp32_uart
|
|
|
|
/* Include esp-idf headers first to avoid redefining BIT() macro */
|
|
/* TODO: include w/o prefix */
|
|
#ifdef CONFIG_SOC_SERIES_ESP32
|
|
#include <esp32/rom/ets_sys.h>
|
|
#include <esp32/rom/gpio.h>
|
|
#include <soc/dport_reg.h>
|
|
#elif defined(CONFIG_SOC_SERIES_ESP32S2)
|
|
#include <esp32s2/rom/ets_sys.h>
|
|
#include <esp32s2/rom/gpio.h>
|
|
#include <soc/dport_reg.h>
|
|
#elif defined(CONFIG_SOC_SERIES_ESP32S3)
|
|
#include <esp32s3/rom/ets_sys.h>
|
|
#include <esp32s3/rom/gpio.h>
|
|
#include <zephyr/dt-bindings/clock/esp32s3_clock.h>
|
|
#elif defined(CONFIG_SOC_SERIES_ESP32C3)
|
|
#include <esp32c3/rom/ets_sys.h>
|
|
#include <esp32c3/rom/gpio.h>
|
|
#include <zephyr/dt-bindings/clock/esp32c3_clock.h>
|
|
#endif
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
#include <zephyr/drivers/dma.h>
|
|
#include <zephyr/drivers/dma/dma_esp32.h>
|
|
#include <hal/uhci_ll.h>
|
|
#endif
|
|
#include <soc/uart_struct.h>
|
|
#include <hal/uart_ll.h>
|
|
#include <hal/uart_hal.h>
|
|
#include <hal/uart_types.h>
|
|
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
|
|
#include <soc/uart_reg.h>
|
|
#include <zephyr/device.h>
|
|
#include <soc.h>
|
|
#include <zephyr/drivers/uart.h>
|
|
|
|
#ifndef CONFIG_SOC_SERIES_ESP32C3
|
|
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
|
|
#else
|
|
#include <zephyr/drivers/interrupt_controller/intc_esp32c3.h>
|
|
#endif
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <errno.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <esp_attr.h>
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(uart_esp32, CONFIG_UART_LOG_LEVEL);
|
|
|
|
#ifdef CONFIG_SOC_SERIES_ESP32C3
|
|
#define ISR_HANDLER isr_handler_t
|
|
#else
|
|
#define ISR_HANDLER intr_handler_t
|
|
#endif
|
|
|
|
struct uart_esp32_config {
|
|
const struct device *clock_dev;
|
|
const struct pinctrl_dev_config *pcfg;
|
|
const clock_control_subsys_t clock_subsys;
|
|
int irq_source;
|
|
int irq_priority;
|
|
#if CONFIG_UART_ASYNC_API
|
|
const struct device *dma_dev;
|
|
uint8_t tx_dma_channel;
|
|
uint8_t rx_dma_channel;
|
|
bool uart_id;
|
|
#endif
|
|
};
|
|
|
|
#if CONFIG_UART_ASYNC_API
|
|
struct uart_esp32_async_data {
|
|
struct k_work_delayable tx_timeout_work;
|
|
const uint8_t *tx_buf;
|
|
size_t tx_len;
|
|
struct k_work_delayable rx_timeout_work;
|
|
uint8_t *rx_buf;
|
|
uint8_t *rx_next_buf;
|
|
size_t rx_len;
|
|
size_t rx_next_len;
|
|
size_t rx_timeout;
|
|
volatile size_t rx_counter;
|
|
size_t rx_offset;
|
|
uart_callback_t cb;
|
|
void *user_data;
|
|
};
|
|
#endif
|
|
|
|
/* driver data */
|
|
struct uart_esp32_data {
|
|
struct uart_config uart_config;
|
|
uart_hal_context_t hal;
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
uart_irq_callback_user_data_t irq_cb;
|
|
void *irq_cb_data;
|
|
#endif
|
|
#if CONFIG_UART_ASYNC_API
|
|
struct uart_esp32_async_data async;
|
|
uhci_dev_t *uhci_dev;
|
|
const struct device *uart_dev;
|
|
#endif
|
|
};
|
|
|
|
#define UART_FIFO_LIMIT (UART_LL_FIFO_DEF_LEN)
|
|
#define UART_TX_FIFO_THRESH 0x1
|
|
#define UART_RX_FIFO_THRESH 0x16
|
|
|
|
#if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API
|
|
static void uart_esp32_isr(void *arg);
|
|
#endif
|
|
|
|
static int uart_esp32_poll_in(const struct device *dev, unsigned char *p_char)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
int inout_rd_len = 1;
|
|
|
|
if (uart_hal_get_rxfifo_len(&data->hal) == 0) {
|
|
return -1;
|
|
}
|
|
|
|
uart_hal_read_rxfifo(&data->hal, p_char, &inout_rd_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void uart_esp32_poll_out(const struct device *dev, unsigned char c)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
uint32_t written;
|
|
|
|
/* Wait for space in FIFO */
|
|
while (uart_hal_get_txfifo_len(&data->hal) == 0) {
|
|
; /* Wait */
|
|
}
|
|
|
|
/* Send a character */
|
|
uart_hal_write_txfifo(&data->hal, &c, 1, &written);
|
|
}
|
|
|
|
static int uart_esp32_err_check(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
uint32_t mask = uart_hal_get_intsts_mask(&data->hal);
|
|
uint32_t err = mask & (UART_INTR_PARITY_ERR | UART_INTR_FRAM_ERR);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
static int uart_esp32_config_get(const struct device *dev, struct uart_config *cfg)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
uart_parity_t parity;
|
|
uart_stop_bits_t stop_bit;
|
|
uart_word_length_t data_bit;
|
|
uart_hw_flowcontrol_t hw_flow;
|
|
|
|
uart_hal_get_baudrate(&data->hal, &cfg->baudrate);
|
|
|
|
uart_hal_get_parity(&data->hal, &parity);
|
|
switch (parity) {
|
|
case UART_PARITY_DISABLE:
|
|
cfg->parity = UART_CFG_PARITY_NONE;
|
|
break;
|
|
case UART_PARITY_EVEN:
|
|
cfg->parity = UART_CFG_PARITY_EVEN;
|
|
break;
|
|
case UART_PARITY_ODD:
|
|
cfg->parity = UART_CFG_PARITY_ODD;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uart_hal_get_stop_bits(&data->hal, &stop_bit);
|
|
switch (stop_bit) {
|
|
case UART_STOP_BITS_1:
|
|
cfg->stop_bits = UART_CFG_STOP_BITS_1;
|
|
break;
|
|
case UART_STOP_BITS_1_5:
|
|
cfg->stop_bits = UART_CFG_STOP_BITS_1_5;
|
|
break;
|
|
case UART_STOP_BITS_2:
|
|
cfg->stop_bits = UART_CFG_STOP_BITS_2;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uart_hal_get_data_bit_num(&data->hal, &data_bit);
|
|
switch (data_bit) {
|
|
case UART_DATA_5_BITS:
|
|
cfg->data_bits = UART_CFG_DATA_BITS_5;
|
|
break;
|
|
case UART_DATA_6_BITS:
|
|
cfg->data_bits = UART_CFG_DATA_BITS_6;
|
|
break;
|
|
case UART_DATA_7_BITS:
|
|
cfg->data_bits = UART_CFG_DATA_BITS_7;
|
|
break;
|
|
case UART_DATA_8_BITS:
|
|
cfg->data_bits = UART_CFG_DATA_BITS_8;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uart_hal_get_hw_flow_ctrl(&data->hal, &hw_flow);
|
|
switch (hw_flow) {
|
|
case UART_HW_FLOWCTRL_DISABLE:
|
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
|
|
break;
|
|
case UART_HW_FLOWCTRL_CTS_RTS:
|
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS;
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (uart_hal_is_mode_rs485_half_duplex(&data->hal)) {
|
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
|
|
static int uart_esp32_configure(const struct device *dev, const struct uart_config *cfg)
|
|
{
|
|
const struct uart_esp32_config *config = dev->config;
|
|
struct uart_esp32_data *data = dev->data;
|
|
int ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
|
|
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (!device_is_ready(config->clock_dev)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
clock_control_on(config->clock_dev, config->clock_subsys);
|
|
|
|
uart_hal_set_sclk(&data->hal, UART_SCLK_APB);
|
|
uart_hal_set_rxfifo_full_thr(&data->hal, UART_RX_FIFO_THRESH);
|
|
uart_hal_set_txfifo_empty_thr(&data->hal, UART_TX_FIFO_THRESH);
|
|
uart_hal_rxfifo_rst(&data->hal);
|
|
|
|
switch (cfg->parity) {
|
|
case UART_CFG_PARITY_NONE:
|
|
uart_hal_set_parity(&data->hal, UART_PARITY_DISABLE);
|
|
break;
|
|
case UART_CFG_PARITY_EVEN:
|
|
uart_hal_set_parity(&data->hal, UART_PARITY_EVEN);
|
|
break;
|
|
case UART_CFG_PARITY_ODD:
|
|
uart_hal_set_parity(&data->hal, UART_PARITY_ODD);
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
switch (cfg->stop_bits) {
|
|
case UART_CFG_STOP_BITS_1:
|
|
uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1);
|
|
break;
|
|
case UART_CFG_STOP_BITS_1_5:
|
|
uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1_5);
|
|
break;
|
|
case UART_CFG_STOP_BITS_2:
|
|
uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_2);
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
switch (cfg->data_bits) {
|
|
case UART_CFG_DATA_BITS_5:
|
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_5_BITS);
|
|
break;
|
|
case UART_CFG_DATA_BITS_6:
|
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_6_BITS);
|
|
break;
|
|
case UART_CFG_DATA_BITS_7:
|
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_7_BITS);
|
|
break;
|
|
case UART_CFG_DATA_BITS_8:
|
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_8_BITS);
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uart_hal_set_mode(&data->hal, UART_MODE_UART);
|
|
|
|
switch (cfg->flow_ctrl) {
|
|
case UART_CFG_FLOW_CTRL_NONE:
|
|
uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_DISABLE, 0);
|
|
break;
|
|
case UART_CFG_FLOW_CTRL_RTS_CTS:
|
|
uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_CTS_RTS, 10);
|
|
break;
|
|
case UART_CFG_FLOW_CTRL_RS485:
|
|
uart_hal_set_mode(&data->hal, UART_MODE_RS485_HALF_DUPLEX);
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
uart_hal_set_baudrate(&data->hal, cfg->baudrate);
|
|
|
|
uart_hal_set_rx_timeout(&data->hal, 0x16);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
static int uart_esp32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
uint32_t written = 0;
|
|
|
|
if (len < 0) {
|
|
return 0;
|
|
}
|
|
|
|
uart_hal_write_txfifo(&data->hal, tx_data, len, &written);
|
|
return written;
|
|
}
|
|
|
|
static int uart_esp32_fifo_read(const struct device *dev, uint8_t *rx_data, const int len)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
const int num_rx = uart_hal_get_rxfifo_len(&data->hal);
|
|
int read = MIN(len, num_rx);
|
|
|
|
if (!read) {
|
|
return 0;
|
|
}
|
|
|
|
uart_hal_read_rxfifo(&data->hal, rx_data, &read);
|
|
return read;
|
|
}
|
|
|
|
static void uart_esp32_irq_tx_enable(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);
|
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);
|
|
}
|
|
|
|
static void uart_esp32_irq_tx_disable(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);
|
|
}
|
|
|
|
static int uart_esp32_irq_tx_ready(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
return (uart_hal_get_txfifo_len(&data->hal) > 0 &&
|
|
uart_hal_get_intr_ena_status(&data->hal) & UART_INTR_TXFIFO_EMPTY);
|
|
}
|
|
|
|
static void uart_esp32_irq_rx_disable(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL);
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
|
|
}
|
|
|
|
static int uart_esp32_irq_tx_complete(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
return uart_hal_is_tx_idle(&data->hal);
|
|
}
|
|
|
|
static int uart_esp32_irq_rx_ready(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
return (uart_hal_get_rxfifo_len(&data->hal) > 0);
|
|
}
|
|
|
|
static void uart_esp32_irq_err_enable(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
/* enable framing, parity */
|
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_FRAM_ERR);
|
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_PARITY_ERR);
|
|
}
|
|
|
|
static void uart_esp32_irq_err_disable(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_FRAM_ERR);
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_PARITY_ERR);
|
|
}
|
|
|
|
static int uart_esp32_irq_is_pending(const struct device *dev)
|
|
{
|
|
return uart_esp32_irq_rx_ready(dev) || uart_esp32_irq_tx_ready(dev);
|
|
}
|
|
|
|
static int uart_esp32_irq_update(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL);
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void uart_esp32_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
|
|
void *cb_data)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
data->irq_cb = cb;
|
|
data->irq_cb_data = cb_data;
|
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
|
|
data->async.cb = NULL;
|
|
data->async.user_data = NULL;
|
|
#endif
|
|
}
|
|
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
static inline void uart_esp32_async_timer_start(struct k_work_delayable *work, size_t timeout)
|
|
{
|
|
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
|
|
LOG_DBG("Async timer started for %d us", timeout);
|
|
k_work_reschedule(work, K_USEC(timeout));
|
|
}
|
|
}
|
|
|
|
#endif
|
|
#if CONFIG_UART_ASYNC_API || CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
static void uart_esp32_irq_rx_enable(const struct device *dev)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL);
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
|
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL);
|
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT);
|
|
}
|
|
|
|
static void uart_esp32_isr(void *arg)
|
|
{
|
|
const struct device *dev = (const struct device *)arg;
|
|
struct uart_esp32_data *data = dev->data;
|
|
uint32_t uart_intr_status = uart_hal_get_intsts_mask(&data->hal);
|
|
const struct uart_esp32_config *config = dev->config;
|
|
|
|
if (uart_intr_status == 0) {
|
|
return;
|
|
}
|
|
uart_hal_clr_intsts_mask(&data->hal, uart_intr_status);
|
|
|
|
#if CONFIG_UART_INTERRUPT_DRIVEN
|
|
/* Verify if the callback has been registered */
|
|
if (data->irq_cb) {
|
|
data->irq_cb(dev, data->irq_cb_data);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_UART_ASYNC_API
|
|
if (uart_intr_status & UART_INTR_RXFIFO_FULL) {
|
|
data->async.rx_counter++;
|
|
uart_esp32_async_timer_start(&data->async.rx_timeout_work, data->async.rx_timeout);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if CONFIG_UART_ASYNC_API
|
|
static void IRAM_ATTR uart_esp32_dma_rx_done(const struct device *dma_dev, void *user_data,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *uart_dev = user_data;
|
|
const struct uart_esp32_config *config = uart_dev->config;
|
|
struct uart_esp32_data *data = uart_dev->data;
|
|
struct uart_event evt = {0};
|
|
struct dma_status dma_status = {0};
|
|
unsigned int key = irq_lock();
|
|
|
|
/* If the receive buffer is not complete we reload the DMA at current buffer position and
|
|
* let the timeout callback handle the notifications
|
|
*/
|
|
if (data->async.rx_counter != data->async.rx_len) {
|
|
dma_reload(config->dma_dev, config->rx_dma_channel, 0,
|
|
(uint32_t)data->async.rx_buf + data->async.rx_counter,
|
|
data->async.rx_len - data->async.rx_counter);
|
|
dma_start(config->dma_dev, config->rx_dma_channel);
|
|
data->uhci_dev->pkt_thres.thrs = data->async.rx_len - data->async.rx_counter;
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
/*Notify RX_RDY*/
|
|
evt.type = UART_RX_RDY;
|
|
evt.data.rx.buf = data->async.rx_buf;
|
|
evt.data.rx.len = data->async.rx_counter - data->async.rx_offset;
|
|
evt.data.rx.offset = data->async.rx_offset;
|
|
|
|
if (data->async.cb && evt.data.rx.len) {
|
|
data->async.cb(data->uart_dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
data->async.rx_offset = 0;
|
|
data->async.rx_counter = 0;
|
|
|
|
/*Release current buffer*/
|
|
evt.type = UART_RX_BUF_RELEASED;
|
|
evt.data.rx_buf.buf = data->async.rx_buf;
|
|
if (data->async.cb) {
|
|
data->async.cb(uart_dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
/*Load next buffer and request another*/
|
|
data->async.rx_buf = data->async.rx_next_buf;
|
|
data->async.rx_len = data->async.rx_next_len;
|
|
data->async.rx_next_buf = NULL;
|
|
data->async.rx_next_len = 0U;
|
|
evt.type = UART_RX_BUF_REQUEST;
|
|
if (data->async.cb) {
|
|
data->async.cb(uart_dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
/*Notify RX_DISABLED when there is no buffer*/
|
|
if (!data->async.rx_buf) {
|
|
evt.type = UART_RX_DISABLED;
|
|
if (data->async.cb) {
|
|
data->async.cb(uart_dev, &evt, data->async.user_data);
|
|
}
|
|
} else {
|
|
/*Reload DMA with new buffer*/
|
|
dma_reload(config->dma_dev, config->rx_dma_channel, 0, (uint32_t)data->async.rx_buf,
|
|
data->async.rx_len);
|
|
dma_start(config->dma_dev, config->rx_dma_channel);
|
|
data->uhci_dev->pkt_thres.thrs = data->async.rx_len;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static void IRAM_ATTR uart_esp32_dma_tx_done(const struct device *dma_dev, void *user_data,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *uart_dev = user_data;
|
|
const struct uart_esp32_config *config = uart_dev->config;
|
|
struct uart_esp32_data *data = uart_dev->data;
|
|
struct uart_event evt = {0};
|
|
unsigned int key = irq_lock();
|
|
|
|
k_work_cancel_delayable(&data->async.tx_timeout_work);
|
|
|
|
evt.type = UART_TX_DONE;
|
|
evt.data.tx.buf = data->async.tx_buf;
|
|
evt.data.tx.len = data->async.tx_len;
|
|
if (data->async.cb) {
|
|
data->async.cb(uart_dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
/* Reset TX Buffer */
|
|
data->async.tx_buf = NULL;
|
|
data->async.tx_len = 0U;
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static int uart_esp32_async_tx_abort(const struct device *dev)
|
|
{
|
|
const struct uart_esp32_config *config = dev->config;
|
|
struct uart_esp32_data *data = dev->data;
|
|
struct uart_event evt = {0};
|
|
int err = 0;
|
|
unsigned int key = irq_lock();
|
|
|
|
k_work_cancel_delayable(&data->async.tx_timeout_work);
|
|
|
|
err = dma_stop(config->dma_dev, config->tx_dma_channel);
|
|
if (err) {
|
|
LOG_ERR("Error stoping Tx DMA (%d)", err);
|
|
goto unlock;
|
|
}
|
|
|
|
evt.type = UART_TX_ABORTED;
|
|
evt.data.tx.buf = data->async.tx_buf;
|
|
evt.data.tx.len = data->async.tx_len;
|
|
|
|
if (data->async.cb) {
|
|
data->async.cb(dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
unlock:
|
|
irq_unlock(key);
|
|
return err;
|
|
}
|
|
|
|
static void uart_esp32_async_tx_timeout(struct k_work *work)
|
|
{
|
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
|
|
struct uart_esp32_async_data *async =
|
|
CONTAINER_OF(dwork, struct uart_esp32_async_data, tx_timeout_work);
|
|
struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async);
|
|
|
|
uart_esp32_async_tx_abort(data->uart_dev);
|
|
}
|
|
|
|
static void uart_esp32_async_rx_timeout(struct k_work *work)
|
|
{
|
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
|
|
struct uart_esp32_async_data *async =
|
|
CONTAINER_OF(dwork, struct uart_esp32_async_data, rx_timeout_work);
|
|
struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async);
|
|
const struct uart_esp32_config *config = data->uart_dev->config;
|
|
struct uart_event evt = {0};
|
|
int err = 0;
|
|
unsigned int key = irq_lock();
|
|
|
|
evt.type = UART_RX_RDY;
|
|
evt.data.rx.buf = data->async.rx_buf;
|
|
evt.data.rx.len = data->async.rx_counter - data->async.rx_offset;
|
|
evt.data.rx.offset = data->async.rx_offset;
|
|
|
|
if (data->async.cb && evt.data.rx.len) {
|
|
data->async.cb(data->uart_dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
data->async.rx_offset = data->async.rx_counter;
|
|
k_work_cancel_delayable(&data->async.rx_timeout_work);
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static int uart_esp32_async_callback_set(const struct device *dev, uart_callback_t callback,
|
|
void *user_data)
|
|
{
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
if (!callback) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
data->async.cb = callback;
|
|
data->async.user_data = user_data;
|
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
|
|
data->irq_cb = NULL;
|
|
data->irq_cb_data = NULL;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_esp32_async_tx(const struct device *dev, const uint8_t *buf, size_t len,
|
|
int32_t timeout)
|
|
{
|
|
const struct uart_esp32_config *config = dev->config;
|
|
struct uart_esp32_data *data = dev->data;
|
|
struct dma_config dma_cfg = {0};
|
|
struct dma_block_config dma_blk = {0};
|
|
struct dma_status dma_status = {0};
|
|
int err = 0;
|
|
unsigned int key = irq_lock();
|
|
|
|
if (config->tx_dma_channel == 0xFF) {
|
|
LOG_ERR("Tx DMA channel is not configured");
|
|
err = -ENOTSUP;
|
|
goto unlock;
|
|
}
|
|
|
|
err = dma_get_status(config->dma_dev, config->tx_dma_channel, &dma_status);
|
|
if (err) {
|
|
LOG_ERR("Unable to get Tx status (%d)", err);
|
|
goto unlock;
|
|
}
|
|
|
|
if (dma_status.busy) {
|
|
LOG_ERR("Tx DMA Channel is busy");
|
|
err = -EBUSY;
|
|
goto unlock;
|
|
}
|
|
|
|
data->async.tx_buf = buf;
|
|
data->async.tx_len = len;
|
|
|
|
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
|
|
dma_cfg.dma_callback = uart_esp32_dma_tx_done;
|
|
dma_cfg.user_data = (void *)dev;
|
|
dma_cfg.dma_slot = GDMA_TRIG_PERIPH_UHCI0;
|
|
dma_cfg.block_count = 1;
|
|
dma_cfg.head_block = &dma_blk;
|
|
dma_blk.block_size = len;
|
|
dma_blk.source_address = (uint32_t)buf;
|
|
|
|
err = dma_config(config->dma_dev, config->tx_dma_channel, &dma_cfg);
|
|
if (err) {
|
|
LOG_ERR("Error configuring Tx DMA (%d)", err);
|
|
goto unlock;
|
|
}
|
|
|
|
uart_esp32_async_timer_start(&data->async.tx_timeout_work, timeout);
|
|
|
|
err = dma_start(config->dma_dev, config->tx_dma_channel);
|
|
if (err) {
|
|
LOG_ERR("Error starting Tx DMA (%d)", err);
|
|
goto unlock;
|
|
}
|
|
|
|
unlock:
|
|
irq_unlock(key);
|
|
return err;
|
|
}
|
|
|
|
static int uart_esp32_async_rx_enable(const struct device *dev, uint8_t *buf, size_t len,
|
|
int32_t timeout)
|
|
{
|
|
const struct uart_esp32_config *config = dev->config;
|
|
struct uart_esp32_data *data = dev->data;
|
|
struct dma_config dma_cfg = {0};
|
|
struct dma_block_config dma_blk = {0};
|
|
struct dma_status dma_status = {0};
|
|
int err = 0;
|
|
struct uart_event evt = {0};
|
|
|
|
if (config->rx_dma_channel == 0xFF) {
|
|
LOG_ERR("Rx DMA channel is not configured");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
err = dma_get_status(config->dma_dev, config->rx_dma_channel, &dma_status);
|
|
if (err) {
|
|
LOG_ERR("Unable to get Rx status (%d)", err);
|
|
return err;
|
|
}
|
|
|
|
if (dma_status.busy) {
|
|
LOG_ERR("Rx DMA Channel is busy");
|
|
return -EBUSY;
|
|
}
|
|
|
|
unsigned int key = irq_lock();
|
|
|
|
data->async.rx_buf = buf;
|
|
data->async.rx_len = len;
|
|
data->async.rx_timeout = timeout;
|
|
|
|
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
|
|
dma_cfg.dma_callback = uart_esp32_dma_rx_done;
|
|
dma_cfg.user_data = (void *)dev;
|
|
dma_cfg.dma_slot = GDMA_TRIG_PERIPH_UHCI0;
|
|
dma_cfg.block_count = 1;
|
|
dma_cfg.head_block = &dma_blk;
|
|
dma_blk.block_size = len;
|
|
dma_blk.dest_address = (uint32_t)data->async.rx_buf;
|
|
|
|
err = dma_config(config->dma_dev, config->rx_dma_channel, &dma_cfg);
|
|
if (err) {
|
|
LOG_ERR("Error configuring Rx DMA (%d)", err);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupt on first receive byte so we can start async timer
|
|
*/
|
|
uart_hal_set_rxfifo_full_thr(&data->hal, 1);
|
|
uart_esp32_irq_rx_enable(dev);
|
|
|
|
err = dma_start(config->dma_dev, config->rx_dma_channel);
|
|
if (err) {
|
|
LOG_ERR("Error starting Rx DMA (%d)", err);
|
|
goto unlock;
|
|
}
|
|
|
|
data->uhci_dev->pkt_thres.thrs = len;
|
|
|
|
/**
|
|
* Request next buffer
|
|
*/
|
|
evt.type = UART_RX_BUF_REQUEST;
|
|
if (data->async.cb) {
|
|
data->async.cb(dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
unlock:
|
|
irq_unlock(key);
|
|
return err;
|
|
}
|
|
|
|
static int uart_esp32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
|
|
{
|
|
const struct uart_esp32_config *config = dev->config;
|
|
struct uart_esp32_data *data = dev->data;
|
|
|
|
data->async.rx_next_buf = buf;
|
|
data->async.rx_next_len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_esp32_async_rx_disable(const struct device *dev)
|
|
{
|
|
const struct uart_esp32_config *config = dev->config;
|
|
struct uart_esp32_data *data = dev->data;
|
|
unsigned int key = irq_lock();
|
|
int err = 0;
|
|
struct uart_event evt = {0};
|
|
|
|
k_work_cancel_delayable(&data->async.rx_timeout_work);
|
|
|
|
if (!data->async.rx_len) {
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
err = dma_stop(config->dma_dev, config->rx_dma_channel);
|
|
if (err) {
|
|
LOG_ERR("Error stoping Rx DMA (%d)", err);
|
|
goto unlock;
|
|
}
|
|
|
|
/*If any bytes have been received notify RX_RDY*/
|
|
evt.type = UART_RX_RDY;
|
|
evt.data.rx.buf = data->async.rx_buf;
|
|
evt.data.rx.len = data->async.rx_counter - data->async.rx_offset;
|
|
evt.data.rx.offset = data->async.rx_offset;
|
|
|
|
if (data->async.cb && evt.data.rx.len) {
|
|
data->async.cb(data->uart_dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
data->async.rx_offset = 0;
|
|
data->async.rx_counter = 0;
|
|
|
|
/* Release current buffer*/
|
|
evt.type = UART_RX_BUF_RELEASED;
|
|
evt.data.rx_buf.buf = data->async.rx_buf;
|
|
|
|
if (data->async.cb) {
|
|
data->async.cb(dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
data->async.rx_len = 0;
|
|
data->async.rx_buf = NULL;
|
|
|
|
/*Release next buffer*/
|
|
if (data->async.rx_next_len) {
|
|
evt.type = UART_RX_BUF_RELEASED;
|
|
evt.data.rx_buf.buf = data->async.rx_buf;
|
|
if (data->async.cb) {
|
|
data->async.cb(dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
data->async.rx_next_len = 0;
|
|
data->async.rx_next_buf = NULL;
|
|
}
|
|
|
|
/*Notify UART_RX_DISABLED*/
|
|
evt.type = UART_RX_DISABLED;
|
|
if (data->async.cb) {
|
|
data->async.cb(dev, &evt, data->async.user_data);
|
|
}
|
|
|
|
unlock:
|
|
irq_unlock(key);
|
|
return err;
|
|
}
|
|
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
|
|
static int uart_esp32_init(const struct device *dev)
|
|
{
|
|
const struct uart_esp32_config *config = dev->config;
|
|
struct uart_esp32_data *data = dev->data;
|
|
int ret = uart_esp32_configure(dev, &data->uart_config);
|
|
|
|
if (ret < 0) {
|
|
LOG_ERR("Error configuring UART (%d)", ret);
|
|
return ret;
|
|
}
|
|
|
|
#if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API
|
|
ret = esp_intr_alloc(config->irq_source,
|
|
config->irq_priority,
|
|
(ISR_HANDLER)uart_esp32_isr,
|
|
(void *)dev,
|
|
NULL);
|
|
if (ret < 0) {
|
|
LOG_ERR("Error allocating UART interrupt (%d)", ret);
|
|
return ret;
|
|
}
|
|
#endif
|
|
#if CONFIG_UART_ASYNC_API
|
|
if (config->dma_dev) {
|
|
if (!device_is_ready(config->dma_dev)) {
|
|
LOG_ERR("DMA device is not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
clock_control_on(config->clock_dev, (clock_control_subsys_t)ESP32_UHCI0_MODULE);
|
|
uhci_ll_init(data->uhci_dev);
|
|
uhci_ll_set_eof_mode(data->uhci_dev, UHCI_RX_IDLE_EOF | UHCI_RX_LEN_EOF);
|
|
uhci_ll_attach_uart_port(data->uhci_dev, config->uart_id);
|
|
data->uart_dev = dev;
|
|
|
|
k_work_init_delayable(&data->async.tx_timeout_work, uart_esp32_async_tx_timeout);
|
|
k_work_init_delayable(&data->async.rx_timeout_work, uart_esp32_async_rx_timeout);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static const DRAM_ATTR struct uart_driver_api uart_esp32_api = {
|
|
.poll_in = uart_esp32_poll_in,
|
|
.poll_out = uart_esp32_poll_out,
|
|
.err_check = uart_esp32_err_check,
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
.configure = uart_esp32_configure,
|
|
.config_get = uart_esp32_config_get,
|
|
#endif
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
.fifo_fill = uart_esp32_fifo_fill,
|
|
.fifo_read = uart_esp32_fifo_read,
|
|
.irq_tx_enable = uart_esp32_irq_tx_enable,
|
|
.irq_tx_disable = uart_esp32_irq_tx_disable,
|
|
.irq_tx_ready = uart_esp32_irq_tx_ready,
|
|
.irq_rx_enable = uart_esp32_irq_rx_enable,
|
|
.irq_rx_disable = uart_esp32_irq_rx_disable,
|
|
.irq_tx_complete = uart_esp32_irq_tx_complete,
|
|
.irq_rx_ready = uart_esp32_irq_rx_ready,
|
|
.irq_err_enable = uart_esp32_irq_err_enable,
|
|
.irq_err_disable = uart_esp32_irq_err_disable,
|
|
.irq_is_pending = uart_esp32_irq_is_pending,
|
|
.irq_update = uart_esp32_irq_update,
|
|
.irq_callback_set = uart_esp32_irq_callback_set,
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
#if CONFIG_UART_ASYNC_API
|
|
.callback_set = uart_esp32_async_callback_set,
|
|
.tx = uart_esp32_async_tx,
|
|
.tx_abort = uart_esp32_async_tx_abort,
|
|
.rx_enable = uart_esp32_async_rx_enable,
|
|
.rx_buf_rsp = uart_esp32_async_rx_buf_rsp,
|
|
.rx_disable = uart_esp32_async_rx_disable,
|
|
#endif /*CONFIG_UART_ASYNC_API*/
|
|
};
|
|
|
|
#if CONFIG_UART_ASYNC_API
|
|
#define ESP_UART_DMA_INIT(n) \
|
|
.dma_dev = ESP32_DT_INST_DMA_CTLR(n, tx), \
|
|
.tx_dma_channel = ESP32_DT_INST_DMA_CELL(n, tx, channel), \
|
|
.rx_dma_channel = ESP32_DT_INST_DMA_CELL(n, rx, channel), \
|
|
.uart_id = (DEVICE_DT_GET(DT_NODELABEL(uart0)) != DEVICE_DT_INST_GET(n)),
|
|
|
|
#define ESP_UART_UHCI_INIT(n) \
|
|
.uhci_dev = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (&UHCI0), (NULL))
|
|
|
|
#define UART_IRQ_PRIORITY ESP_INTR_FLAG_LEVEL2
|
|
|
|
#else
|
|
#define ESP_UART_DMA_INIT(n)
|
|
#define ESP_UART_UHCI_INIT(n)
|
|
#define UART_IRQ_PRIORITY (0)
|
|
#endif
|
|
|
|
#define ESP32_UART_INIT(idx) \
|
|
\
|
|
PINCTRL_DT_INST_DEFINE(idx); \
|
|
\
|
|
static const DRAM_ATTR struct uart_esp32_config uart_esp32_cfg_port_##idx = { \
|
|
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
|
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
|
|
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(idx, offset), \
|
|
.irq_source = DT_INST_IRQN(idx), \
|
|
.irq_priority = UART_IRQ_PRIORITY, \
|
|
ESP_UART_DMA_INIT(idx)}; \
|
|
\
|
|
static struct uart_esp32_data uart_esp32_data_##idx = { \
|
|
.uart_config = {.baudrate = DT_INST_PROP(idx, current_speed), \
|
|
.parity = UART_CFG_PARITY_NONE, \
|
|
.stop_bits = UART_CFG_STOP_BITS_1, \
|
|
.data_bits = UART_CFG_DATA_BITS_8, \
|
|
.flow_ctrl = MAX(COND_CODE_1(DT_INST_PROP(idx, hw_rs485_hd_mode), \
|
|
(UART_CFG_FLOW_CTRL_RS485), \
|
|
(UART_CFG_FLOW_CTRL_NONE)), \
|
|
COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \
|
|
(UART_CFG_FLOW_CTRL_RTS_CTS), \
|
|
(UART_CFG_FLOW_CTRL_NONE)))}, \
|
|
.hal = \
|
|
{ \
|
|
.dev = (uart_dev_t *)DT_INST_REG_ADDR(idx), \
|
|
}, \
|
|
ESP_UART_UHCI_INIT(idx)}; \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(idx, &uart_esp32_init, NULL, &uart_esp32_data_##idx, \
|
|
&uart_esp32_cfg_port_##idx, PRE_KERNEL_1, \
|
|
CONFIG_SERIAL_INIT_PRIORITY, &uart_esp32_api);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ESP32_UART_INIT);
|