zephyr/drivers/ieee802154/ieee802154_uart_pipe.c
Robert Lubos 1fb418df4c net: ieee802154_radio: Allow to specify TX mode
Even though radio driver can report in its capabilities that it does
support CSMA CA, there's no way in the driver to select how the frame
should be transmitted (with CSMA or without). As layers above radio
driver (Thread, Zigbee) can expect that both TX modes are available, we
need to extend the API to allow either of these modes.

This commits extends the API `tx` function with an extra parameter,
`ieee802154_tx_mode`, which informs the driver how the packet should be
transmitted. Currently, the following modes are specified:
* direct (regular tx, no cca, just how it worked so far),
* CCA before transmission,
* CSMA CA before transmission,
* delayed TX,
* delayed TX with CCA

Assume that radios that reported CSMA CA capability transmit in CSMA CA
mode by default, all others will support direct mode.

Signed-off-by: Robert Lubos <robert.lubos@nordicsemi.no>
2020-04-03 14:07:41 +03:00

398 lines
8.5 KiB
C

/*
* Copyright (c) 2016 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_MODULE_NAME ieee802154_uart_pipe
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <errno.h>
#include <kernel.h>
#include <arch/cpu.h>
#include <device.h>
#include <init.h>
#include <net/net_if.h>
#include <net/net_pkt.h>
#include <drivers/console/uart_pipe.h>
#include <net/ieee802154_radio.h>
#include "ieee802154_uart_pipe.h"
#define PAN_ID_OFFSET 3 /* Pan Id offset */
#define DEST_ADDR_OFFSET 5 /* Destination offset address*/
#define DEST_ADDR_TYPE_OFFSET 1 /* Destination address type */
#define DEST_ADDR_TYPE_MASK 0x0c /* Mask for destination address type */
#define DEST_ADDR_TYPE_SHORT 0x08 /* Short destination address type */
#define DEST_ADDR_TYPE_EXTENDED 0x0c /* Extended destination address type */
#define PAN_ID_SIZE 2 /* Size of Pan Id */
#define SHORT_ADDRESS_SIZE 2 /* Size of Short Mac Address */
#define EXTENDED_ADDRESS_SIZE 8 /* Size of Extended Mac Address */
/* Broadcast Short Address */
#define BROADCAST_ADDRESS ((uint8_t [SHORT_ADDRESS_SIZE]) {0xff, 0xff})
static u8_t dev_pan_id[PAN_ID_SIZE]; /* Device Pan Id */
static u8_t dev_short_addr[SHORT_ADDRESS_SIZE]; /* Device Short Address */
static u8_t dev_ext_addr[EXTENDED_ADDRESS_SIZE]; /* Device Extended Address */
/** Singleton device used in uart pipe callback */
static struct device *upipe_dev;
#if defined(CONFIG_IEEE802154_UPIPE_HW_FILTER)
static bool received_dest_addr_matched(u8_t *rx_buffer)
{
struct upipe_context *upipe = upipe_dev->driver_data;
/* Check destination PAN Id */
if (memcmp(&rx_buffer[PAN_ID_OFFSET],
dev_pan_id, PAN_ID_SIZE) != 0 &&
memcmp(&rx_buffer[PAN_ID_OFFSET],
BROADCAST_ADDRESS, PAN_ID_SIZE) != 0) {
return false;
}
/* Check destination address */
switch (rx_buffer[DEST_ADDR_TYPE_OFFSET] & DEST_ADDR_TYPE_MASK) {
case DEST_ADDR_TYPE_SHORT:
/* First check if the destination is broadcast */
/* If not broadcast, check if length and address matches */
if (memcmp(&rx_buffer[DEST_ADDR_OFFSET],
BROADCAST_ADDRESS,
SHORT_ADDRESS_SIZE) != 0 &&
(net_if_get_link_addr(upipe->iface)->len !=
SHORT_ADDRESS_SIZE ||
memcmp(&rx_buffer[DEST_ADDR_OFFSET],
dev_short_addr,
SHORT_ADDRESS_SIZE) != 0)) {
return false;
}
break;
case DEST_ADDR_TYPE_EXTENDED:
/* If not broadcast, check if length and address matches */
if (net_if_get_link_addr(upipe->iface)->len !=
EXTENDED_ADDRESS_SIZE ||
memcmp(&rx_buffer[DEST_ADDR_OFFSET],
dev_ext_addr, EXTENDED_ADDRESS_SIZE) != 0) {
return false;
}
break;
default:
return false;
}
return true;
}
#endif
static u8_t *upipe_rx(u8_t *buf, size_t *off)
{
struct net_pkt *pkt = NULL;
struct upipe_context *upipe;
if (!upipe_dev) {
goto done;
}
upipe = upipe_dev->driver_data;
if (!upipe->rx && *buf == UART_PIPE_RADIO_15_4_FRAME_TYPE) {
upipe->rx = true;
goto done;
}
if (!upipe->rx_len) {
if (*buf > 127) {
goto flush;
}
upipe->rx_len = *buf;
goto done;
}
upipe->rx_buf[upipe->rx_off++] = *buf;
if (upipe->rx_len == upipe->rx_off) {
struct net_buf *frag;
pkt = net_pkt_rx_alloc(K_NO_WAIT);
if (!pkt) {
LOG_DBG("No pkt available");
goto flush;
}
frag = net_pkt_get_frag(pkt, K_NO_WAIT);
if (!frag) {
LOG_DBG("No fragment available");
goto out;
}
net_pkt_frag_insert(pkt, frag);
memcpy(frag->data, upipe->rx_buf, upipe->rx_len);
net_buf_add(frag, upipe->rx_len);
#if defined(CONFIG_IEEE802154_UPIPE_HW_FILTER)
if (received_dest_addr_matched(frag->data) == false) {
LOG_DBG("Packet received is not addressed to me");
goto out;
}
#endif
if (ieee802154_radio_handle_ack(upipe->iface, pkt) == NET_OK) {
LOG_DBG("ACK packet handled");
goto out;
}
LOG_DBG("Caught a packet (%u)", upipe->rx_len);
if (net_recv_data(upipe->iface, pkt) < 0) {
LOG_DBG("Packet dropped by NET stack");
goto out;
}
goto flush;
out:
net_pkt_unref(pkt);
flush:
upipe->rx = false;
upipe->rx_len = 0U;
upipe->rx_off = 0U;
}
done:
*off = 0;
return buf;
}
static enum ieee802154_hw_caps upipe_get_capabilities(struct device *dev)
{
return IEEE802154_HW_FCS |
IEEE802154_HW_2_4_GHZ |
IEEE802154_HW_FILTER;
}
static int upipe_cca(struct device *dev)
{
struct upipe_context *upipe = dev->driver_data;
if (upipe->stopped) {
return -EIO;
}
return 0;
}
static int upipe_set_channel(struct device *dev, u16_t channel)
{
ARG_UNUSED(dev);
ARG_UNUSED(channel);
return 0;
}
static int upipe_set_pan_id(struct device *dev, u16_t pan_id)
{
u8_t pan_id_le[2];
ARG_UNUSED(dev);
sys_put_le16(pan_id, pan_id_le);
memcpy(dev_pan_id, pan_id_le, PAN_ID_SIZE);
return 0;
}
static int upipe_set_short_addr(struct device *dev, u16_t short_addr)
{
u8_t short_addr_le[2];
ARG_UNUSED(dev);
sys_put_le16(short_addr, short_addr_le);
memcpy(dev_short_addr, short_addr_le, SHORT_ADDRESS_SIZE);
return 0;
}
static int upipe_set_ieee_addr(struct device *dev, const u8_t *ieee_addr)
{
ARG_UNUSED(dev);
memcpy(dev_ext_addr, ieee_addr, EXTENDED_ADDRESS_SIZE);
return 0;
}
static int upipe_filter(struct device *dev,
bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return upipe_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return upipe_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return upipe_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int upipe_set_txpower(struct device *dev, s16_t dbm)
{
ARG_UNUSED(dev);
ARG_UNUSED(dbm);
return 0;
}
static int upipe_tx(struct device *dev,
enum ieee802154_tx_mode mode,
struct net_pkt *pkt,
struct net_buf *frag)
{
struct upipe_context *upipe = dev->driver_data;
u8_t *pkt_buf = frag->data;
u8_t len = frag->len;
u8_t i, data;
if (mode != IEEE802154_TX_MODE_DIRECT) {
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
LOG_DBG("%p (%u)", frag, len);
if (upipe->stopped) {
return -EIO;
}
data = UART_PIPE_RADIO_15_4_FRAME_TYPE;
uart_pipe_send(&data, 1);
data = len;
uart_pipe_send(&data, 1);
for (i = 0U; i < len; i++) {
uart_pipe_send(pkt_buf+i, 1);
}
return 0;
}
static int upipe_start(struct device *dev)
{
struct upipe_context *upipe = dev->driver_data;
if (!upipe->stopped) {
return -EALREADY;
}
upipe->stopped = false;
return 0;
}
static int upipe_stop(struct device *dev)
{
struct upipe_context *upipe = dev->driver_data;
if (upipe->stopped) {
return -EALREADY;
}
upipe->stopped = true;
return 0;
}
static int upipe_init(struct device *dev)
{
struct upipe_context *upipe = dev->driver_data;
(void)memset(upipe, 0, sizeof(struct upipe_context));
uart_pipe_register(upipe->uart_pipe_buf, 1, upipe_rx);
upipe_stop(dev);
return 0;
}
static inline u8_t *get_mac(struct device *dev)
{
struct upipe_context *upipe = dev->driver_data;
upipe->mac_addr[0] = 0x00;
upipe->mac_addr[1] = 0x10;
upipe->mac_addr[2] = 0x20;
upipe->mac_addr[3] = 0x30;
#if defined(CONFIG_IEEE802154_UPIPE_RANDOM_MAC)
UNALIGNED_PUT(sys_cpu_to_be32(sys_rand32_get()),
(u32_t *) ((u8_t *)upipe->mac_addr+4));
#else
upipe->mac_addr[4] = CONFIG_IEEE802154_UPIPE_MAC4;
upipe->mac_addr[5] = CONFIG_IEEE802154_UPIPE_MAC5;
upipe->mac_addr[6] = CONFIG_IEEE802154_UPIPE_MAC6;
upipe->mac_addr[7] = CONFIG_IEEE802154_UPIPE_MAC7;
#endif
return upipe->mac_addr;
}
static void upipe_iface_init(struct net_if *iface)
{
struct device *dev = net_if_get_device(iface);
struct upipe_context *upipe = dev->driver_data;
u8_t *mac = get_mac(dev);
net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
upipe_dev = dev;
upipe->iface = iface;
ieee802154_init(iface);
}
static struct upipe_context upipe_context_data;
static struct ieee802154_radio_api upipe_radio_api = {
.iface_api.init = upipe_iface_init,
.get_capabilities = upipe_get_capabilities,
.cca = upipe_cca,
.set_channel = upipe_set_channel,
.filter = upipe_filter,
.set_txpower = upipe_set_txpower,
.tx = upipe_tx,
.start = upipe_start,
.stop = upipe_stop,
};
NET_DEVICE_INIT(upipe_15_4, CONFIG_IEEE802154_UPIPE_DRV_NAME,
upipe_init, device_pm_control_nop,
&upipe_context_data, NULL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&upipe_radio_api, IEEE802154_L2,
NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);