zephyr/drivers/serial/uart_esp32.c
Sylvio Alves b0c48a2182 drivers: uart: esp32: set device to initialize pre-kernel
Uart post kernel initialization does not allow starting shell
properly. This issue was added in UART unifying PR.

Signed-off-by: Sylvio Alves <sylvio.alves@espressif.com>
2021-11-09 15:18:15 -05:00

559 lines
15 KiB
C

/*
* Copyright (c) 2019 Mohamed ElShahawi (extremegtx@hotmail.com)
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_uart
/* Include esp-idf headers first to avoid redefining BIT() macro */
/* TODO: include w/o prefix */
#ifdef CONFIG_SOC_ESP32
#include <esp32/rom/ets_sys.h>
#include <esp32/rom/gpio.h>
#include <soc/dport_reg.h>
#elif defined(CONFIG_SOC_ESP32S2)
#include <esp32s2/rom/ets_sys.h>
#include <esp32s2/rom/gpio.h>
#include <soc/dport_reg.h>
#elif defined(CONFIG_SOC_ESP32C3)
#include <esp32c3/rom/ets_sys.h>
#include <esp32c3/rom/gpio.h>
#endif
#include <soc/uart_struct.h>
#include "stubs.h"
#include <hal/uart_ll.h>
#include <hal/uart_hal.h>
#include <hal/uart_types.h>
#include <drivers/gpio.h>
#include <soc/gpio_sig_map.h>
#include <soc/uart_reg.h>
#include <device.h>
#include <soc.h>
#include <drivers/uart.h>
#ifndef CONFIG_SOC_ESP32C3
#include <drivers/interrupt_controller/intc_esp32.h>
#else
#include <drivers/interrupt_controller/intc_esp32c3.h>
#endif
#include <drivers/clock_control.h>
#include <errno.h>
#include <sys/util.h>
#include <esp_attr.h>
#ifdef CONFIG_SOC_ESP32C3
#define ISR_HANDLER isr_handler_t
#else
#define ISR_HANDLER intr_handler_t
#endif
struct uart_esp32_pin {
const char *gpio_name;
int signal;
int pin;
};
struct uart_esp32_config {
uart_hal_context_t hal;
const struct device *clock_dev;
const struct uart_esp32_pin tx;
const struct uart_esp32_pin rx;
const struct uart_esp32_pin rts;
const struct uart_esp32_pin cts;
const clock_control_subsys_t clock_subsys;
int irq_source;
};
/* driver data */
struct uart_esp32_data {
struct uart_config uart_config;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t irq_cb;
void *irq_cb_data;
#endif
int irq_line;
};
#define DEV_CFG(dev) \
((struct uart_esp32_config *const)(dev)->config)
#define DEV_DATA(dev) \
((struct uart_esp32_data *)(dev)->data)
#define UART_FIFO_LIMIT (UART_LL_FIFO_DEF_LEN)
#define UART_TX_FIFO_THRESH 0x1
#define UART_RX_FIFO_THRESH 0x16
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_esp32_isr(void *arg);
#endif
static int uart_esp32_poll_in(const struct device *dev, unsigned char *p_char)
{
int inout_rd_len = 1;
if (uart_hal_get_rxfifo_len(&DEV_CFG(dev)->hal) == 0) {
return -1;
}
uart_hal_read_rxfifo(&DEV_CFG(dev)->hal, p_char, &inout_rd_len);
return inout_rd_len;
}
static void uart_esp32_poll_out(const struct device *dev, unsigned char c)
{
uint32_t written;
/* Wait for space in FIFO */
while (uart_hal_get_txfifo_len(&DEV_CFG(dev)->hal) == 0) {
; /* Wait */
}
/* Send a character */
uart_hal_write_txfifo(&DEV_CFG(dev)->hal, &c, 1, &written);
}
static int uart_esp32_err_check(const struct device *dev)
{
uint32_t mask = uart_hal_get_intsts_mask(&DEV_CFG(dev)->hal);
uint32_t err = mask & (UART_INTR_PARITY_ERR | UART_INTR_FRAM_ERR);
return err;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_esp32_config_get(const struct device *dev,
struct uart_config *cfg)
{
uart_parity_t parity;
uart_stop_bits_t stop_bit;
uart_word_length_t data_bit;
uart_hw_flowcontrol_t hw_flow;
uart_hal_get_baudrate(&DEV_CFG(dev)->hal, &cfg->baudrate);
uart_hal_get_parity(&DEV_CFG(dev)->hal, &parity);
switch (parity) {
case UART_PARITY_DISABLE:
cfg->parity = UART_CFG_PARITY_NONE;
break;
case UART_PARITY_EVEN:
cfg->parity = UART_CFG_PARITY_EVEN;
break;
case UART_PARITY_ODD:
cfg->parity = UART_CFG_PARITY_ODD;
break;
default:
return -ENOTSUP;
}
uart_hal_get_stop_bits(&DEV_CFG(dev)->hal, &stop_bit);
switch (stop_bit) {
case UART_STOP_BITS_1:
cfg->stop_bits = UART_CFG_STOP_BITS_1;
break;
case UART_STOP_BITS_1_5:
cfg->stop_bits = UART_CFG_STOP_BITS_1_5;
break;
case UART_STOP_BITS_2:
cfg->stop_bits = UART_CFG_STOP_BITS_2;
break;
default:
return -ENOTSUP;
}
uart_hal_get_data_bit_num(&DEV_CFG(dev)->hal, &data_bit);
switch (data_bit) {
case UART_DATA_5_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_5;
break;
case UART_DATA_6_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_6;
break;
case UART_DATA_7_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_7;
break;
case UART_DATA_8_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_8;
break;
default:
return -ENOTSUP;
}
uart_hal_get_hw_flow_ctrl(&DEV_CFG(dev)->hal, &hw_flow);
switch (hw_flow) {
case UART_HW_FLOWCTRL_DISABLE:
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
break;
case UART_HW_FLOWCTRL_CTS_RTS:
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS;
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int uart_esp32_configure_pins(const struct device *dev, const struct uart_config *uart)
{
const struct uart_esp32_config *const cfg = DEV_CFG(dev);
do {
if (cfg->tx.gpio_name == NULL || cfg->rx.gpio_name == NULL)
break;
/* TX pin config */
const struct device *tx_dev = device_get_binding(cfg->tx.gpio_name);
if (!tx_dev)
break;
gpio_pin_set(tx_dev, cfg->tx.pin, 1);
gpio_pin_configure(tx_dev, cfg->tx.pin, GPIO_OUTPUT);
esp_rom_gpio_matrix_out(cfg->tx.pin, cfg->tx.signal, 0, 0);
/* RX pin config */
const struct device *rx_dev = device_get_binding(cfg->rx.gpio_name);
if (!rx_dev)
break;
gpio_pin_configure(rx_dev, cfg->rx.pin, GPIO_PULL_UP | GPIO_INPUT);
esp_rom_gpio_matrix_in(cfg->rx.pin, cfg->rx.signal, 0);
if (uart->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS) {
if (cfg->rts.gpio_name == NULL || cfg->cts.gpio_name == NULL)
break;
/* CTS pin config */
const struct device *cts_dev = device_get_binding(cfg->cts.gpio_name);
if (!cts_dev)
break;
gpio_pin_configure(cts_dev, cfg->cts.pin, GPIO_PULL_UP | GPIO_INPUT);
esp_rom_gpio_matrix_in(cfg->cts.pin, cfg->cts.signal, 0);
/* RTS pin config */
const struct device *rts_dev = device_get_binding(cfg->rts.gpio_name);
if (!rts_dev)
break;
gpio_pin_configure(rts_dev, cfg->rts.pin, GPIO_OUTPUT);
esp_rom_gpio_matrix_out(cfg->rts.pin, cfg->rts.signal, 0, 0);
}
return 0;
} while (0);
return -EINVAL;
}
static int uart_esp32_configure(const struct device *dev, const struct uart_config *cfg)
{
int ret = uart_esp32_configure_pins(dev, cfg);
if (ret < 0) {
return ret;
}
clock_control_on(DEV_CFG(dev)->clock_dev, DEV_CFG(dev)->clock_subsys);
uart_hal_set_sclk(&DEV_CFG(dev)->hal, UART_SCLK_APB);
uart_hal_set_rxfifo_full_thr(&DEV_CFG(dev)->hal, UART_RX_FIFO_THRESH);
uart_hal_set_txfifo_empty_thr(&DEV_CFG(dev)->hal, UART_TX_FIFO_THRESH);
uart_hal_rxfifo_rst(&DEV_CFG(dev)->hal);
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
uart_hal_set_parity(&DEV_CFG(dev)->hal, UART_PARITY_DISABLE);
break;
case UART_CFG_PARITY_EVEN:
uart_hal_set_parity(&DEV_CFG(dev)->hal, UART_PARITY_EVEN);
break;
case UART_CFG_PARITY_ODD:
uart_hal_set_parity(&DEV_CFG(dev)->hal, UART_PARITY_ODD);
break;
default:
return -ENOTSUP;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
uart_hal_set_stop_bits(&DEV_CFG(dev)->hal, UART_STOP_BITS_1);
break;
case UART_CFG_STOP_BITS_1_5:
uart_hal_set_stop_bits(&DEV_CFG(dev)->hal, UART_STOP_BITS_1_5);
break;
case UART_CFG_STOP_BITS_2:
uart_hal_set_stop_bits(&DEV_CFG(dev)->hal, UART_STOP_BITS_2);
break;
default:
return -ENOTSUP;
}
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_5_BITS);
break;
case UART_CFG_DATA_BITS_6:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_6_BITS);
break;
case UART_CFG_DATA_BITS_7:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_7_BITS);
break;
case UART_CFG_DATA_BITS_8:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_8_BITS);
break;
default:
return -ENOTSUP;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
uart_hal_set_hw_flow_ctrl(&DEV_CFG(dev)->hal, UART_HW_FLOWCTRL_DISABLE, 0);
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
uart_hal_set_hw_flow_ctrl(&DEV_CFG(dev)->hal, UART_HW_FLOWCTRL_CTS_RTS, 10);
break;
default:
return -ENOTSUP;
}
uart_hal_set_baudrate(&DEV_CFG(dev)->hal, cfg->baudrate);
uart_hal_set_rx_timeout(&DEV_CFG(dev)->hal, 0x16);
return 0;
}
static int uart_esp32_init(const struct device *dev)
{
int ret = uart_esp32_configure(dev, &DEV_DATA(dev)->uart_config);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
DEV_DATA(dev)->irq_line =
esp_intr_alloc(DEV_CFG(dev)->irq_source,
0,
(ISR_HANDLER)uart_esp32_isr,
(void *)dev,
NULL);
#endif
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_esp32_fifo_fill(const struct device *dev,
const uint8_t *tx_data, int len)
{
uint32_t written = 0;
uart_hal_write_txfifo(&DEV_CFG(dev)->hal, tx_data, len, &written);
return written;
}
static int uart_esp32_fifo_read(const struct device *dev,
uint8_t *rx_data, const int len)
{
const int num_rx = uart_hal_get_rxfifo_len(&DEV_CFG(dev)->hal);
int read = MIN(len, num_rx);
if (!read) {
return 0;
}
uart_hal_read_rxfifo(&DEV_CFG(dev)->hal, rx_data, &read);
return read;
}
static void uart_esp32_irq_tx_enable(const struct device *dev)
{
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
}
static void uart_esp32_irq_tx_disable(const struct device *dev)
{
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
}
static int uart_esp32_irq_tx_ready(const struct device *dev)
{
return (uart_hal_get_txfifo_len(&DEV_CFG(dev)->hal) > 0);
}
static void uart_esp32_irq_rx_enable(const struct device *dev)
{
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
}
static void uart_esp32_irq_rx_disable(const struct device *dev)
{
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
}
static int uart_esp32_irq_tx_complete(const struct device *dev)
{
/* check if TX FIFO is empty */
return (uart_hal_get_txfifo_len(&DEV_CFG(dev)->hal) == UART_LL_FIFO_DEF_LEN ? 1 : 0);
}
static int uart_esp32_irq_rx_ready(const struct device *dev)
{
return (uart_hal_get_rxfifo_len(&DEV_CFG(dev)->hal) > 0);
}
static void uart_esp32_irq_err_enable(const struct device *dev)
{
/* enable framing, parity */
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_FRAM_ERR);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_PARITY_ERR);
}
static void uart_esp32_irq_err_disable(const struct device *dev)
{
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_FRAM_ERR);
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_PARITY_ERR);
}
static int uart_esp32_irq_is_pending(const struct device *dev)
{
return uart_esp32_irq_rx_ready(dev) || uart_esp32_irq_tx_ready(dev);
}
static int uart_esp32_irq_update(const struct device *dev)
{
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
return 1;
}
static void uart_esp32_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
DEV_DATA(dev)->irq_cb = cb;
DEV_DATA(dev)->irq_cb_data = cb_data;
}
static void uart_esp32_isr(void *arg)
{
const struct device *dev = (const struct device *)arg;
struct uart_esp32_data *data = DEV_DATA(dev);
uint32_t uart_intr_status = uart_hal_get_intsts_mask(&DEV_CFG(dev)->hal);
if (uart_intr_status == 0) {
return;
}
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, uart_intr_status);
/* Verify if the callback has been registered */
if (data->irq_cb) {
data->irq_cb(dev, data->irq_cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const DRAM_ATTR struct uart_driver_api uart_esp32_api = {
.poll_in = uart_esp32_poll_in,
.poll_out = uart_esp32_poll_out,
.err_check = uart_esp32_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_esp32_configure,
.config_get = uart_esp32_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_esp32_fifo_fill,
.fifo_read = uart_esp32_fifo_read,
.irq_tx_enable = uart_esp32_irq_tx_enable,
.irq_tx_disable = uart_esp32_irq_tx_disable,
.irq_tx_ready = uart_esp32_irq_tx_ready,
.irq_rx_enable = uart_esp32_irq_rx_enable,
.irq_rx_disable = uart_esp32_irq_rx_disable,
.irq_tx_complete = uart_esp32_irq_tx_complete,
.irq_rx_ready = uart_esp32_irq_rx_ready,
.irq_err_enable = uart_esp32_irq_err_enable,
.irq_err_disable = uart_esp32_irq_err_disable,
.irq_is_pending = uart_esp32_irq_is_pending,
.irq_update = uart_esp32_irq_update,
.irq_callback_set = uart_esp32_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#define GPIO0_NAME COND_CODE_1(DT_NODE_HAS_STATUS(DT_NODELABEL(gpio0), okay), \
(DT_LABEL(DT_INST(0, espressif_esp32_gpio))), (NULL))
#define GPIO1_NAME COND_CODE_1(DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay), \
(DT_LABEL(DT_INST(1, espressif_esp32_gpio))), (NULL))
#define DT_UART_ESP32_GPIO_NAME(idx, pin) ( \
DT_INST_PROP(idx, pin) < 32 ? GPIO0_NAME : GPIO1_NAME)
#define ESP32_UART_INIT(idx) \
static const DRAM_ATTR struct uart_esp32_config uart_esp32_cfg_port_##idx = { \
.hal = { \
.dev = \
(uart_dev_t *)DT_REG_ADDR(DT_NODELABEL(uart##idx)), \
}, \
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_NODELABEL(uart##idx))), \
.tx = { \
.signal = U##idx##TXD_OUT_IDX, \
.pin = DT_INST_PROP(idx, tx_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, tx_pin), \
}, \
.rx = { \
.signal = U##idx##RXD_IN_IDX, \
.pin = DT_INST_PROP(idx, rx_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, rx_pin), \
}, \
IF_ENABLED(DT_PROP(DT_NODELABEL(uart##idx), hw_flow_control), ( \
.rts = { \
.signal = U##idx##RTS_OUT_IDX, \
.pin = DT_INST_PROP(idx, rts_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, rts_pin), \
}, \
.cts = { \
.signal = U##idx##CTS_IN_IDX, \
.pin = DT_INST_PROP(idx, cts_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, cts_pin), \
},)) \
.clock_subsys = (clock_control_subsys_t)DT_CLOCKS_CELL(DT_NODELABEL(uart##idx), offset), \
.irq_source = DT_IRQN(DT_NODELABEL(uart##idx)) \
}; \
\
static struct uart_esp32_data uart_esp32_data_##idx = { \
.uart_config = { \
.baudrate = DT_INST_PROP(idx, current_speed),\
.parity = UART_CFG_PARITY_NONE, \
.stop_bits = UART_CFG_STOP_BITS_1, \
.data_bits = UART_CFG_DATA_BITS_8, \
.flow_ctrl = IS_ENABLED( \
DT_PROP(DT_NODELABEL(uart##idx), hw_flow_control)) ?\
UART_CFG_FLOW_CTRL_RTS_CTS : UART_CFG_FLOW_CTRL_NONE \
} \
}; \
\
DEVICE_DT_DEFINE(DT_NODELABEL(uart##idx), \
&uart_esp32_init, \
NULL, \
&uart_esp32_data_##idx, \
&uart_esp32_cfg_port_##idx, \
PRE_KERNEL_2, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_esp32_api);
DT_INST_FOREACH_STATUS_OKAY(ESP32_UART_INIT);