d6776fe169
Add check for device_is_ready() before accessing clock control devices. Signed-off-by: Henrik Brix Andersen <hebad@vestas.com>
856 lines
24 KiB
C
856 lines
24 KiB
C
/*
|
|
* Copyright (c) 2016, Freescale Semiconductor, Inc.
|
|
* Copyright (c) 2017,2019, NXP
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT nxp_lpc_spi
|
|
|
|
#include <errno.h>
|
|
#include <zephyr/drivers/spi.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <fsl_spi.h>
|
|
#include <zephyr/logging/log.h>
|
|
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
|
|
#include <zephyr/drivers/dma.h>
|
|
#endif
|
|
#ifdef CONFIG_PINCTRL
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#endif
|
|
#include <zephyr/sys_clock.h>
|
|
|
|
LOG_MODULE_REGISTER(spi_mcux_flexcomm, CONFIG_SPI_LOG_LEVEL);
|
|
|
|
#include "spi_context.h"
|
|
|
|
#define SPI_CHIP_SELECT_COUNT 4
|
|
#define SPI_MAX_DATA_WIDTH 16
|
|
|
|
struct spi_mcux_config {
|
|
SPI_Type *base;
|
|
const struct device *clock_dev;
|
|
clock_control_subsys_t clock_subsys;
|
|
void (*irq_config_func)(const struct device *dev);
|
|
uint32_t pre_delay;
|
|
uint32_t post_delay;
|
|
uint32_t frame_delay;
|
|
uint32_t transfer_delay;
|
|
uint32_t def_char;
|
|
#ifdef CONFIG_PINCTRL
|
|
const struct pinctrl_dev_config *pincfg;
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
|
|
#define SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG 0x01
|
|
#define SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG 0x02
|
|
#define SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG 0x04
|
|
#define SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG \
|
|
(SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG | SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG)
|
|
|
|
struct stream {
|
|
const struct device *dma_dev;
|
|
uint32_t channel; /* stores the channel for dma */
|
|
struct dma_config dma_cfg;
|
|
struct dma_block_config dma_blk_cfg[2];
|
|
};
|
|
#endif
|
|
|
|
struct spi_mcux_data {
|
|
const struct device *dev;
|
|
spi_master_handle_t handle;
|
|
struct spi_context ctx;
|
|
size_t transfer_len;
|
|
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
|
|
volatile uint32_t status_flags;
|
|
struct stream dma_rx;
|
|
struct stream dma_tx;
|
|
/* dummy value used for transferring NOP when tx buf is null */
|
|
uint32_t dummy_tx_buffer;
|
|
/* Used to send the last word */
|
|
uint32_t last_word;
|
|
#endif
|
|
};
|
|
|
|
static void spi_mcux_transfer_next_packet(const struct device *dev)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
SPI_Type *base = config->base;
|
|
struct spi_context *ctx = &data->ctx;
|
|
spi_transfer_t transfer;
|
|
status_t status;
|
|
|
|
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
|
|
/* nothing left to rx or tx, we're done! */
|
|
spi_context_cs_control(&data->ctx, false);
|
|
spi_context_complete(&data->ctx, 0);
|
|
return;
|
|
}
|
|
|
|
transfer.configFlags = 0;
|
|
if (ctx->tx_len == 0) {
|
|
/* rx only, nothing to tx */
|
|
transfer.txData = NULL;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->rx_len;
|
|
} else if (ctx->rx_len == 0) {
|
|
/* tx only, nothing to rx */
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = NULL;
|
|
transfer.dataSize = ctx->tx_len;
|
|
} else if (ctx->tx_len == ctx->rx_len) {
|
|
/* rx and tx are the same length */
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->tx_len;
|
|
} else if (ctx->tx_len > ctx->rx_len) {
|
|
/* Break up the tx into multiple transfers so we don't have to
|
|
* rx into a longer intermediate buffer. Leave chip select
|
|
* active between transfers.
|
|
*/
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->rx_len;
|
|
} else {
|
|
/* Break up the rx into multiple transfers so we don't have to
|
|
* tx from a longer intermediate buffer. Leave chip select
|
|
* active between transfers.
|
|
*/
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->tx_len;
|
|
}
|
|
|
|
if (ctx->tx_count <= 1 && ctx->rx_count <= 1) {
|
|
transfer.configFlags = kSPI_FrameAssert;
|
|
}
|
|
|
|
data->transfer_len = transfer.dataSize;
|
|
|
|
status = SPI_MasterTransferNonBlocking(base, &data->handle, &transfer);
|
|
if (status != kStatus_Success) {
|
|
LOG_ERR("Transfer could not start");
|
|
}
|
|
}
|
|
|
|
static void spi_mcux_isr(const struct device *dev)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
SPI_Type *base = config->base;
|
|
|
|
SPI_MasterTransferHandleIRQ(base, &data->handle);
|
|
}
|
|
|
|
static void spi_mcux_transfer_callback(SPI_Type *base,
|
|
spi_master_handle_t *handle, status_t status, void *userData)
|
|
{
|
|
struct spi_mcux_data *data = userData;
|
|
|
|
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
|
|
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
|
|
|
|
spi_mcux_transfer_next_packet(data->dev);
|
|
}
|
|
|
|
static uint8_t spi_clock_cycles(uint32_t delay_ns, uint32_t sck_frequency_hz)
|
|
{
|
|
/* Convert delay_ns to an integer number of clock cycles of frequency
|
|
* sck_frequency_hz. The maximum delay is 15 clock cycles.
|
|
*/
|
|
uint8_t delay_cycles = (uint64_t)delay_ns * sck_frequency_hz / NSEC_PER_SEC;
|
|
|
|
delay_cycles = MIN(delay_cycles, 15);
|
|
|
|
return delay_cycles;
|
|
}
|
|
|
|
static int spi_mcux_configure(const struct device *dev,
|
|
const struct spi_config *spi_cfg)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
SPI_Type *base = config->base;
|
|
uint32_t clock_freq;
|
|
uint32_t word_size;
|
|
|
|
if (spi_context_configured(&data->ctx, spi_cfg)) {
|
|
/* This configuration is already in use */
|
|
return 0;
|
|
}
|
|
|
|
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
|
|
LOG_ERR("Half-duplex not supported");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
|
|
if (word_size > SPI_MAX_DATA_WIDTH) {
|
|
LOG_ERR("Word size %d is greater than %d",
|
|
word_size, SPI_MAX_DATA_WIDTH);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Do master or slave initialisation, depending on the
|
|
* mode requested.
|
|
*/
|
|
if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_MASTER) {
|
|
spi_master_config_t master_config;
|
|
|
|
SPI_MasterGetDefaultConfig(&master_config);
|
|
|
|
if (!device_is_ready(config->clock_dev)) {
|
|
LOG_ERR("clock control device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Get the clock frequency */
|
|
if (clock_control_get_rate(config->clock_dev,
|
|
config->clock_subsys, &clock_freq)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (spi_cfg->slave > SPI_CHIP_SELECT_COUNT) {
|
|
LOG_ERR("Slave %d is greater than %d",
|
|
spi_cfg->slave, SPI_CHIP_SELECT_COUNT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
master_config.sselNum = spi_cfg->slave;
|
|
master_config.sselPol = kSPI_SpolActiveAllLow;
|
|
master_config.dataWidth = word_size - 1;
|
|
|
|
master_config.polarity =
|
|
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
|
|
? kSPI_ClockPolarityActiveLow
|
|
: kSPI_ClockPolarityActiveHigh;
|
|
|
|
master_config.phase =
|
|
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
|
|
? kSPI_ClockPhaseSecondEdge
|
|
: kSPI_ClockPhaseFirstEdge;
|
|
|
|
master_config.direction =
|
|
(spi_cfg->operation & SPI_TRANSFER_LSB)
|
|
? kSPI_LsbFirst
|
|
: kSPI_MsbFirst;
|
|
|
|
master_config.baudRate_Bps = spi_cfg->frequency;
|
|
|
|
spi_delay_config_t *delayConfig = &master_config.delayConfig;
|
|
|
|
delayConfig->preDelay = spi_clock_cycles(config->pre_delay,
|
|
spi_cfg->frequency);
|
|
delayConfig->postDelay = spi_clock_cycles(config->post_delay,
|
|
spi_cfg->frequency);
|
|
delayConfig->frameDelay = spi_clock_cycles(config->frame_delay,
|
|
spi_cfg->frequency);
|
|
delayConfig->transferDelay = spi_clock_cycles(config->transfer_delay,
|
|
spi_cfg->frequency);
|
|
|
|
SPI_MasterInit(base, &master_config, clock_freq);
|
|
|
|
SPI_SetDummyData(base, (uint8_t)config->def_char);
|
|
|
|
SPI_MasterTransferCreateHandle(base, &data->handle,
|
|
spi_mcux_transfer_callback, data);
|
|
|
|
data->ctx.config = spi_cfg;
|
|
} else {
|
|
spi_slave_config_t slave_config;
|
|
|
|
SPI_SlaveGetDefaultConfig(&slave_config);
|
|
|
|
slave_config.polarity =
|
|
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
|
|
? kSPI_ClockPolarityActiveLow
|
|
: kSPI_ClockPolarityActiveHigh;
|
|
|
|
slave_config.phase =
|
|
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
|
|
? kSPI_ClockPhaseSecondEdge
|
|
: kSPI_ClockPhaseFirstEdge;
|
|
|
|
slave_config.direction =
|
|
(spi_cfg->operation & SPI_TRANSFER_LSB)
|
|
? kSPI_LsbFirst
|
|
: kSPI_MsbFirst;
|
|
|
|
/* SS pin active low */
|
|
slave_config.sselPol = kSPI_SpolActiveAllLow;
|
|
slave_config.dataWidth = word_size - 1;
|
|
|
|
SPI_SlaveInit(base, &slave_config);
|
|
|
|
SPI_SetDummyData(base, (uint8_t)config->def_char);
|
|
|
|
SPI_SlaveTransferCreateHandle(base, &data->handle,
|
|
spi_mcux_transfer_callback, data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
|
|
/* Dummy buffer used as a sink when rc buf is null */
|
|
uint32_t dummy_rx_buffer;
|
|
|
|
/* This function is executed in the interrupt context */
|
|
static void spi_mcux_dma_callback(const struct device *dev, void *arg,
|
|
uint32_t channel, int status)
|
|
{
|
|
/* arg directly holds the spi device */
|
|
struct spi_mcux_data *data = arg;
|
|
|
|
if (status != 0) {
|
|
LOG_ERR("DMA callback error with channel %d.", channel);
|
|
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG;
|
|
} else {
|
|
/* identify the origin of this callback */
|
|
if (channel == data->dma_tx.channel) {
|
|
/* this part of the transfer ends */
|
|
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG;
|
|
} else if (channel == data->dma_rx.channel) {
|
|
/* this part of the transfer ends */
|
|
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG;
|
|
} else {
|
|
LOG_ERR("DMA callback channel %d is not valid.",
|
|
channel);
|
|
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG;
|
|
}
|
|
}
|
|
|
|
spi_context_complete(&data->ctx, 0);
|
|
}
|
|
|
|
|
|
static void spi_mcux_prepare_txlastword(uint32_t *txLastWord,
|
|
const uint8_t *buf, const struct spi_config *spi_cfg,
|
|
size_t len)
|
|
{
|
|
uint32_t word_size;
|
|
|
|
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
|
|
|
|
if (word_size > 8) {
|
|
*txLastWord = (((uint32_t)buf[len - 1U] << 8U) |
|
|
(buf[len - 2U]));
|
|
} else {
|
|
*txLastWord = buf[len - 1U];
|
|
}
|
|
|
|
*txLastWord |= (uint32_t)SPI_FIFOWR_EOT_MASK;
|
|
|
|
*txLastWord |= ((uint32_t)SPI_DEASSERT_ALL &
|
|
(~(uint32_t)SPI_DEASSERTNUM_SSEL((uint32_t)spi_cfg->slave)));
|
|
|
|
/* set width of data - range asserted at entry */
|
|
*txLastWord |= SPI_FIFOWR_LEN(word_size - 1);
|
|
}
|
|
|
|
static void spi_mcux_prepare_txdummy(uint32_t *dummy, bool last_packet,
|
|
const struct spi_config *spi_cfg)
|
|
{
|
|
uint32_t word_size;
|
|
|
|
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
|
|
|
|
if (last_packet) {
|
|
*dummy |= (uint32_t)SPI_FIFOWR_EOT_MASK;
|
|
}
|
|
|
|
*dummy |= ((uint32_t)SPI_DEASSERT_ALL &
|
|
(~(uint32_t)SPI_DEASSERTNUM_SSEL((uint32_t)spi_cfg->slave)));
|
|
|
|
/* set width of data - range asserted at entry */
|
|
*dummy |= SPI_FIFOWR_LEN(word_size - 1);
|
|
}
|
|
|
|
static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf,
|
|
const struct spi_config *spi_cfg, size_t len, bool last_packet)
|
|
{
|
|
const struct spi_mcux_config *cfg = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
struct dma_block_config *blk_cfg;
|
|
int ret;
|
|
SPI_Type *base = cfg->base;
|
|
uint32_t word_size;
|
|
|
|
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
|
|
|
|
/* remember active TX DMA channel (used in callback) */
|
|
struct stream *stream = &data->dma_tx;
|
|
|
|
blk_cfg = &stream->dma_blk_cfg[0];
|
|
|
|
/* prepare the block for this TX DMA channel */
|
|
memset(blk_cfg, 0, sizeof(struct dma_block_config));
|
|
|
|
/* tx direction has memory as source and periph as dest. */
|
|
if (buf == NULL) {
|
|
data->dummy_tx_buffer = 0;
|
|
data->last_word = 0;
|
|
spi_mcux_prepare_txdummy(&data->dummy_tx_buffer, last_packet, spi_cfg);
|
|
|
|
if (last_packet &&
|
|
((word_size > 8) ? (len > 2U) : (len > 1U))) {
|
|
spi_mcux_prepare_txdummy(&data->last_word, last_packet, spi_cfg);
|
|
blk_cfg->source_gather_en = 1;
|
|
blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
|
|
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
|
|
blk_cfg->block_size = (word_size > 8) ?
|
|
(len - 2U) : (len - 1U);
|
|
blk_cfg->next_block = &stream->dma_blk_cfg[1];
|
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
|
|
blk_cfg = &stream->dma_blk_cfg[1];
|
|
|
|
/* prepare the block for this TX DMA channel */
|
|
memset(blk_cfg, 0, sizeof(struct dma_block_config));
|
|
blk_cfg->source_address = (uint32_t)&data->last_word;
|
|
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
|
|
blk_cfg->block_size = sizeof(uint32_t);
|
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
} else {
|
|
blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
|
|
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
|
|
blk_cfg->block_size = len;
|
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
} else {
|
|
if (last_packet) {
|
|
spi_mcux_prepare_txlastword(&data->last_word, buf, spi_cfg, len);
|
|
}
|
|
/* If last packet and data transfer frame is bigger then 1,
|
|
* use dma descriptor to send the last data.
|
|
*/
|
|
if (last_packet &&
|
|
((word_size > 8) ? (len > 2U) : (len > 1U))) {
|
|
blk_cfg->source_gather_en = 1;
|
|
blk_cfg->source_address = (uint32_t)buf;
|
|
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
|
|
blk_cfg->block_size = (word_size > 8) ?
|
|
(len - 2U) : (len - 1U);
|
|
blk_cfg->next_block = &stream->dma_blk_cfg[1];
|
|
|
|
blk_cfg = &stream->dma_blk_cfg[1];
|
|
|
|
/* prepare the block for this TX DMA channel */
|
|
memset(blk_cfg, 0, sizeof(struct dma_block_config));
|
|
blk_cfg->source_address = (uint32_t)&data->last_word;
|
|
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
|
|
blk_cfg->block_size = sizeof(uint32_t);
|
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
} else {
|
|
blk_cfg->source_address = (uint32_t)buf;
|
|
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
|
|
blk_cfg->block_size = len;
|
|
}
|
|
}
|
|
|
|
/* Enables the DMA request from SPI txFIFO */
|
|
base->FIFOCFG |= SPI_FIFOCFG_DMATX_MASK;
|
|
|
|
/* direction is given by the DT */
|
|
stream->dma_cfg.head_block = &stream->dma_blk_cfg[0];
|
|
/* give the client dev as arg, as the callback comes from the dma */
|
|
stream->dma_cfg.user_data = data;
|
|
/* pass our client origin to the dma: data->dma_tx.dma_channel */
|
|
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
|
|
&stream->dma_cfg);
|
|
/* the channel is the actual stream from 0 */
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
uint32_t tmpData = 0U;
|
|
|
|
spi_mcux_prepare_txdummy(&tmpData, last_packet, spi_cfg);
|
|
|
|
/* Setup the control info.
|
|
* Halfword writes to just the control bits (offset 0xE22) doesn't push
|
|
* anything into the FIFO. And the data access type of control bits must
|
|
* be uint16_t, byte writes or halfword writes to FIFOWR will push the
|
|
* data and the current control bits into the FIFO.
|
|
*/
|
|
if ((last_packet) &&
|
|
((word_size > 8) ? (len == 2U) : (len == 1U))) {
|
|
*((uint16_t *)((uint32_t)&base->FIFOWR) + 1) = (uint16_t)(tmpData >> 16U);
|
|
} else {
|
|
/* Clear the SPI_FIFOWR_EOT_MASK bit when data is not the last */
|
|
tmpData &= (~(uint32_t)SPI_FIFOWR_EOT_MASK);
|
|
*((uint16_t *)((uint32_t)&base->FIFOWR) + 1) = (uint16_t)(tmpData >> 16U);
|
|
}
|
|
|
|
/* gives the request ID */
|
|
return dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
|
|
}
|
|
|
|
static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf,
|
|
size_t len)
|
|
{
|
|
const struct spi_mcux_config *cfg = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
struct dma_block_config *blk_cfg;
|
|
int ret;
|
|
SPI_Type *base = cfg->base;
|
|
|
|
/* retrieve active RX DMA channel (used in callback) */
|
|
struct stream *stream = &data->dma_rx;
|
|
|
|
blk_cfg = &stream->dma_blk_cfg[0];
|
|
|
|
/* prepare the block for this RX DMA channel */
|
|
memset(blk_cfg, 0, sizeof(struct dma_block_config));
|
|
blk_cfg->block_size = len;
|
|
|
|
/* rx direction has periph as source and mem as dest. */
|
|
if (buf == NULL) {
|
|
/* if rx buff is null, then write data to dummy address. */
|
|
blk_cfg->dest_address = (uint32_t)&dummy_rx_buffer;
|
|
} else {
|
|
blk_cfg->dest_address = (uint32_t)buf;
|
|
}
|
|
|
|
blk_cfg->source_address = (uint32_t)&base->FIFORD;
|
|
|
|
/* direction is given by the DT */
|
|
stream->dma_cfg.head_block = blk_cfg;
|
|
stream->dma_cfg.user_data = data;
|
|
|
|
/* Enables the DMA request from SPI rxFIFO */
|
|
base->FIFOCFG |= SPI_FIFOCFG_DMARX_MASK;
|
|
|
|
/* pass our client origin to the dma: data->dma_rx.channel */
|
|
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
|
|
&stream->dma_cfg);
|
|
/* the channel is the actual stream from 0 */
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* gives the request ID */
|
|
return dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
|
|
}
|
|
|
|
static int spi_mcux_dma_move_buffers(const struct device *dev, size_t len,
|
|
const struct spi_config *spi_cfg, bool last_packet)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
int ret;
|
|
|
|
ret = spi_mcux_dma_rx_load(dev, data->ctx.rx_buf, len);
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = spi_mcux_dma_tx_load(dev, data->ctx.tx_buf, spi_cfg,
|
|
len, last_packet);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int wait_dma_rx_tx_done(const struct device *dev)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
int ret = -1;
|
|
|
|
while (1) {
|
|
ret = spi_context_wait_for_completion(&data->ctx);
|
|
if (data->status_flags & SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG) {
|
|
return -EIO;
|
|
}
|
|
|
|
if ((data->status_flags & SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG) ==
|
|
SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int transceive_dma(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
bool asynchronous,
|
|
struct k_poll_signal *signal)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
SPI_Type *base = config->base;
|
|
int ret;
|
|
uint32_t word_size;
|
|
|
|
spi_context_lock(&data->ctx, asynchronous, signal, spi_cfg);
|
|
|
|
ret = spi_mcux_configure(dev, spi_cfg);
|
|
if (ret) {
|
|
goto out;
|
|
}
|
|
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
|
|
spi_context_cs_control(&data->ctx, true);
|
|
|
|
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
|
|
|
|
data->dma_rx.dma_cfg.dest_data_size = (word_size > 8) ?
|
|
(sizeof(uint16_t)) : (sizeof(uint8_t));
|
|
data->dma_tx.dma_cfg.dest_data_size = data->dma_rx.dma_cfg.dest_data_size;
|
|
|
|
while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
|
|
size_t dma_len;
|
|
bool last = false;
|
|
|
|
if (data->ctx.rx_len == 0) {
|
|
dma_len = data->ctx.tx_len;
|
|
last = true;
|
|
} else if (data->ctx.tx_len == 0) {
|
|
dma_len = data->ctx.rx_len;
|
|
last = true;
|
|
} else if (data->ctx.tx_len == data->ctx.rx_len) {
|
|
dma_len = data->ctx.rx_len;
|
|
last = true;
|
|
} else {
|
|
dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len);
|
|
last = false;
|
|
}
|
|
|
|
data->status_flags = 0;
|
|
|
|
ret = spi_mcux_dma_move_buffers(dev, dma_len, spi_cfg, last);
|
|
if (ret != 0) {
|
|
break;
|
|
}
|
|
|
|
ret = wait_dma_rx_tx_done(dev);
|
|
if (ret != 0) {
|
|
break;
|
|
}
|
|
|
|
/* wait until TX FIFO is really empty */
|
|
while (0U == (base->FIFOSTAT & SPI_FIFOSTAT_TXEMPTY_MASK)) {
|
|
}
|
|
|
|
spi_context_update_tx(&data->ctx, 1, dma_len);
|
|
spi_context_update_rx(&data->ctx, 1, dma_len);
|
|
}
|
|
|
|
base->FIFOCFG &= ~SPI_FIFOCFG_DMATX_MASK;
|
|
base->FIFOCFG &= ~SPI_FIFOCFG_DMARX_MASK;
|
|
|
|
spi_context_cs_control(&data->ctx, false);
|
|
|
|
out:
|
|
spi_context_release(&data->ctx, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int transceive(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
bool asynchronous,
|
|
struct k_poll_signal *signal)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
int ret;
|
|
|
|
spi_context_lock(&data->ctx, asynchronous, signal, spi_cfg);
|
|
|
|
ret = spi_mcux_configure(dev, spi_cfg);
|
|
if (ret) {
|
|
goto out;
|
|
}
|
|
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
|
|
spi_context_cs_control(&data->ctx, true);
|
|
|
|
spi_mcux_transfer_next_packet(dev);
|
|
|
|
ret = spi_context_wait_for_completion(&data->ctx);
|
|
out:
|
|
spi_context_release(&data->ctx, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spi_mcux_transceive(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs)
|
|
{
|
|
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
|
|
return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
|
|
#endif
|
|
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
static int spi_mcux_transceive_async(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
struct k_poll_signal *async)
|
|
{
|
|
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
|
|
}
|
|
#endif /* CONFIG_SPI_ASYNC */
|
|
|
|
static int spi_mcux_release(const struct device *dev,
|
|
const struct spi_config *spi_cfg)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_mcux_init(const struct device *dev)
|
|
{
|
|
int err;
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
config->irq_config_func(dev);
|
|
|
|
data->dev = dev;
|
|
|
|
#ifdef CONFIG_PINCTRL
|
|
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
|
|
if (!device_is_ready(data->dma_tx.dma_dev)) {
|
|
LOG_ERR("%s device is not ready", data->dma_tx.dma_dev->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!device_is_ready(data->dma_rx.dma_dev)) {
|
|
LOG_ERR("%s device is not ready", data->dma_rx.dma_dev->name);
|
|
return -ENODEV;
|
|
}
|
|
#endif /* CONFIG_SPI_MCUX_FLEXCOMM_DMA */
|
|
|
|
|
|
err = spi_context_cs_configure_all(&data->ctx);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_driver_api spi_mcux_driver_api = {
|
|
.transceive = spi_mcux_transceive,
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
.transceive_async = spi_mcux_transceive_async,
|
|
#endif
|
|
.release = spi_mcux_release,
|
|
};
|
|
|
|
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER_DECL(id) \
|
|
static void spi_mcux_config_func_##id(const struct device *dev)
|
|
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER_FUNC(id) \
|
|
.irq_config_func = spi_mcux_config_func_##id,
|
|
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER(id) \
|
|
static void spi_mcux_config_func_##id(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(id), \
|
|
DT_INST_IRQ(id, priority), \
|
|
spi_mcux_isr, DEVICE_DT_INST_GET(id), \
|
|
0); \
|
|
irq_enable(DT_INST_IRQN(id)); \
|
|
}
|
|
|
|
#ifdef CONFIG_PINCTRL
|
|
#define SPI_MCUX_FLEXCOMM_PINCTRL_DEFINE(id) PINCTRL_DT_INST_DEFINE(id);
|
|
#define SPI_MCUX_FLEXCOMM_PINCTRL_INIT(id) .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id),
|
|
#else
|
|
#define SPI_MCUX_FLEXCOMM_PINCTRL_DEFINE(id)
|
|
#define SPI_MCUX_FLEXCOMM_PINCTRL_INIT(id)
|
|
#endif
|
|
|
|
#ifndef CONFIG_SPI_MCUX_FLEXCOMM_DMA
|
|
#define SPI_DMA_CHANNELS(id)
|
|
#else
|
|
#define SPI_DMA_CHANNELS(id) \
|
|
.dma_tx = { \
|
|
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx)), \
|
|
.channel = \
|
|
DT_INST_DMAS_CELL_BY_NAME(id, tx, channel), \
|
|
.dma_cfg = { \
|
|
.channel_direction = MEMORY_TO_PERIPHERAL, \
|
|
.dma_callback = spi_mcux_dma_callback, \
|
|
.source_data_size = 1, \
|
|
.block_count = 2, \
|
|
} \
|
|
}, \
|
|
.dma_rx = { \
|
|
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx)), \
|
|
.channel = \
|
|
DT_INST_DMAS_CELL_BY_NAME(id, rx, channel), \
|
|
.dma_cfg = { \
|
|
.channel_direction = PERIPHERAL_TO_MEMORY, \
|
|
.dma_callback = spi_mcux_dma_callback, \
|
|
.source_data_size = 1, \
|
|
.block_count = 1, \
|
|
} \
|
|
}
|
|
|
|
#endif
|
|
|
|
#define SPI_MCUX_FLEXCOMM_DEVICE(id) \
|
|
SPI_MCUX_FLEXCOMM_IRQ_HANDLER_DECL(id); \
|
|
SPI_MCUX_FLEXCOMM_PINCTRL_DEFINE(id) \
|
|
static const struct spi_mcux_config spi_mcux_config_##id = { \
|
|
.base = \
|
|
(SPI_Type *)DT_INST_REG_ADDR(id), \
|
|
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
|
|
.clock_subsys = \
|
|
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name),\
|
|
SPI_MCUX_FLEXCOMM_IRQ_HANDLER_FUNC(id) \
|
|
.pre_delay = DT_INST_PROP_OR(id, pre_delay, 0), \
|
|
.post_delay = DT_INST_PROP_OR(id, post_delay, 0), \
|
|
.frame_delay = DT_INST_PROP_OR(id, frame_delay, 0), \
|
|
.transfer_delay = DT_INST_PROP_OR(id, transfer_delay, 0), \
|
|
.def_char = DT_INST_PROP_OR(id, def_char, 0), \
|
|
SPI_MCUX_FLEXCOMM_PINCTRL_INIT(id) \
|
|
}; \
|
|
static struct spi_mcux_data spi_mcux_data_##id = { \
|
|
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##id, ctx), \
|
|
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##id, ctx), \
|
|
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx) \
|
|
SPI_DMA_CHANNELS(id) \
|
|
}; \
|
|
DEVICE_DT_INST_DEFINE(id, \
|
|
&spi_mcux_init, \
|
|
NULL, \
|
|
&spi_mcux_data_##id, \
|
|
&spi_mcux_config_##id, \
|
|
POST_KERNEL, \
|
|
CONFIG_SPI_INIT_PRIORITY, \
|
|
&spi_mcux_driver_api); \
|
|
\
|
|
SPI_MCUX_FLEXCOMM_IRQ_HANDLER(id)
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_FLEXCOMM_DEVICE)
|